Гидромеханическая коробка передач принцип работы - Motokomo.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Гидромеханическая коробка передач принцип работы

Гидромеханическая коробка передач. Устройство

Гидромеханическая коробка передач ⭐ состоит из:

  • гидротрансформатора;
  • механической коробки передач.

На легковых автомобилях наибольшее распространение получили гидромеханические коробки с планетарными механическими коробками. Их преимущества:

  • компактность конструкции;
  • меньшая металлоемкость и шумность;
  • больший срок службы.

К недостаткам относятся:

  • сложность;
  • высокая стоимость;
  • пониженный КПД.

Переключение передач в этих коробках производится при помощи фрикционных муфт и ленточных тормозных механизмов. При этом при включении одной передачи часть фрикционных муфт и ленточных тормозных механизмов пробуксовывает, что также снижает их КПД.

Гидротрансформатор

Гидротрансформатор представляет собой гидравли­ческий механизм, который размещен между двигателем и механической коробкой передач. Он состоит из трех колес с лопатками:

  • насосного (ведущего);
  • турбинного (ведомого);
  • реактора.

Насосное колесо 3 закреплено на маховике 1 двигателя и образует корпус гидротрансформатора, внутри которого размещены тур­бинное колесо 2, соединенное с первичным валом 5 коробки передач и реактор 4, установленный на роликовой муфте 6 свободного хода. Внутренняя полость гидротрансформатора на 3/4 своего объема заполнена специальным маслом малой вязкости.

Рис. Гидротрансформатор:
а – общий вид; б – схема; 1 – маховик; 2 – турбинное колесо; 3 – насосное колесо; 4 – реактор; 5 – вал; 6 – муфта

Каждое колесо имеет наружный и внутренний торцы, между которыми располагаются профилированные лопасти, образующие каналы для протока жидкости. Все колеса гидротрансформатора максимально приближены друг к другу, а вытеснению жидкости препятствуют специальные уплотнения.

При работающем двигателе насосное, колесо вращается вместе с маховиком двигателя. Масло под действием центробежной силы поступает к наружной части насосного колеса, воздействует на лопатки турбинного колеса и приводит его во вращение. Из турбинного колеса масло поступает в реактор, который обеспечивает плавный и безударный вход жидкости в насосное колесо и существенное увеличение крутящего момента. Таким образом, масло циркулирует по замкнутому кругу и обеспечивается передача крутящего момента в гидротрансформаторе.

Характерной особенностью гидротрансформатора является увеличение крутящего момента при его передаче от двигателя к первичному валу коробки передач. Наибольшее увеличение крутящего момента на турбинном колесе гидротрансформатора получается при трогании автомобиля с места, при этом коэффициент трансформации может составлять до 2,4. В этом случае реактор неподвижен так как заторможен муфтой свободного хода. По мере разгона автомобиля увеличивается скорость вращения насосного и турбинного колес. При этом муфта свободного хода расклинивается и реактор начинает вращаться с увеличивающейся скоростью, оказывая все меньшее влияние на передаваемый крутящий момент. После достижения реактором максимальной скорости вращения гидротрансформатор перестает изменять крутящий момент и переходит на режим работы гидромуфты. Таким образом, происходит плавный разгон автомобиля и бесступенчатое изменение крутящего момента.

Гидротрансформатор автоматически устанавливает необходимое передаточное число между коленчатым валом двигателя и к ведущими колесами автомобиля, Это обеспечивается следующим образом: с уменьшением скорости вращения ведущих колес автомобиля при возрастании сопротивления движению возрастает динамический напор жидкости от насоса на турбину, что приводит к росту крутящего момента на турбине, следовательно, на ведущих колесах автомобиля.

КПД гидротрансформатора определяет экономичность его работы. Максимальное значе­ние КПД гидротрансформатора может быть от 0,85 до 0,97, но обычно находится в диапазоне от 0,7 до 0,8. В комплексном гидротрансформаторе на режиме гидромуфты можно получить максимальное значение КПД до 0,97.

Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро­трансформатором устанавливают специальную планетарную коробку передач, которая компенсирует указанные недостатки.

Планетарная коробка передач

Планетарная коробка передач включает в себя планетарные механизмы. В простейшем планетарном механизме солнечная шестерня 6, закрепленная на ведущем валу 1, находится в зацеплении с шестернями-сателлитами 3, свободно установленными на своих осях. Оси сателлитов закреплены на водиле 4, жестко соединенном с ведомым валом 5, а сами сателлиты находятся и зацеплении с коронной шестерней 2, имеющей внутренние зубья.

Рис. Планетарный механизм:
1 – ведущий вал; 2 – коронная шестерня; 3 – сателлиты; 4 – водило; 5 – ведомый вал; 6 – солнечная шестерня; 7 – тормоз

Передача крутящего момента с ведущего вала 1 на ведомый вал 5 возможна только при заторможенной коронной шестерне 2 при помощи ленточного тормоза 7 или многодискового «мокрого» сцепления. В этом случае при вращении шестерни 6 сателлиты 3, перекатываясь по зубьям неподвижной шестерни 2, начнут вращаться вокруг своих осей и одновременно через водило 4 будут вращать ведомый вал 5. При растормаживании шестерни 2 сателлиты 3, свободно перекатываясь по шестерне 6, будут вращать шестерню 2, а вал 5 будет оставаться неподвижным.

В автоматических коробках передач применяются фрикционные муфты сцепления. Фрикционная муфта сцепления со­стоит комплекта покрытых слоем фрикционного материала дисков, прижатых друг к другу через прокладки в виде тонких пластин из гладкого металла.

Рис. Фрикционная муфта сцепления автоматической коробки передач:
1 – канал подачи рабочей жидкости; 2 – поршень; 3 – кожух муфты; а – выключенное состояние; б – включенное состояние

При этом часть фрикционных дисков оснащены внутренними шлицами, часть – наружными. Прижимание дисков друг к другу обеспечивается гидравлическим поршнем 2, для выключения сцепления применяется возвратная пружина. При подаче к поршню давления рабочей жидкости диски плотно прижимаются друг к другу, образуя одно целое. Как только давление снимается, возвратная пружина отводит поршень назад и диски выводятся из зацепления. В качестве возвратных пружин могут использоваться винтовые, диафрагменные и гофрированные дисковые пружины.

Двухступенчатая гидромеханическая коробка передач

В качестве примера гидромеханических передач рассмотрим двухступенчатую гидромеханическую коробку передач. Она состоит из гидротрансформатора 1, механической планетарной коробки передач с многодисковым фрикционом 3 и двумя ленточными тормозными механизмами 2 и 4 и гидравлической системы управлениях кнопочным переключением передач. Кнопки соответственно означают нейтральное положение, задний ход, первую передачу и движение с автоматическим переключением передач. В двухступенчатой механической коробке передач имеются два одинаковых планетарных механизма 5 и 6.

Рис. Гидромеханическая коробка передач:
1 – гидротрансформатор; 2,4 – тормозные механизмы; 3 – фрикцион; 5,6 – планетарные механизмы

В нейтральном положении фрикцион 3, а также тормозные механизмы 2 и 4 выключены. Трогание автомобиля с места происходит при включенной первой передаче. В этом случае масло под давлением поступает в цилиндр тормозного механизма 2, лента которого затягивается, и солнечная шестерня планетарного механизма 6 останавливается.

Если включена кнопка «Движение», то при разгоне автомобиля происходит автоматическое переключение на вторую передачу, что обеспечивается одновременным выключением тормозного механизма 2 и включением фрикциона 3. В этом случае планетарные механизмы 5 и 6 блокируются и вращаются как одно целое.

Для движения автомобиля задним ходом включается только тормозной механизм 4.

В настоящее время автоматические коробки передач имеют электронное управление, что позво­ляет гораздо точнее выдерживать заданные моменты переключения (с точностью до 1 % вместо прежних 6…8 %). Появились дополнительные возможности: по характеру изменения скорости при данной нагрузке на дви­гатель компьютер может вычислить массу автомобиля и ввести соответствующие поправки в алгоритм переключения. Электронное управление предоставило неограниченные возможности для само­диагностики, что позволило корректиро­вать процессы управления в зависимости от многих параметров (от температуры и вязкости жидкости до степени износа фрикционных элементов).

Система автоматического управления обычно состоит из следующих подсистем:

  • функционирования (гидравлические насосы, регуляторы давления)
  • измерительная, собирающая информацию о параметрах управления
  • управляющая, вырабатывающая управляющие сигналы
  • исполнительная, осуществляющая управление переключением передач, работой двигателя
  • подсистема ручного управления
  • подсистема автоматических защит, предотвращающая возникновение опасных ситуаций

Основными элементами электронной системы управления являются электронный блок и рычаг управления.

АКП с электронным управлением

В качестве примера современной АКП с электронным управлением рассмотрим шестиступенчатую коробку передач 09G японского концерна AISIN.

АКП состоит из гидротрансформатора, механической планетарной коробки передач с многодисковыми фрикционами и многодисковыми тормозными механизмами, гидравлической системы, систем охлаждения и смазки, электрической системы.

Рис. Разрез автоматической шестиступенчатой коробки передач 09G:
К– многодисковые муфты; В – многодисковые тормоза; S – солнечные шестерни; Р – сателлиты; РТ – водило; F – обгонная муфта; 1 – вал турбинного колеса; 2 – ведомая шестерня промежуточной передачи; 3 – жидкостный насос

Планетарные ряды объединены по схеме, разработанной Лепеллетье (Lepelletier). Крутящий момент двигателя подводится к одинарному планетарному ряду. Далее он направляется на сдвоенный планетарный ряд Равиньо (Ravigneaux).

Рис. Двухредукторная планетарная система Лепеллетье:
а – обычный планетарный редуктор; б – планетарный редуктор Равиньо; 1 – вал турбинного колеса; Р1 – сателлит коронной шестерни Н1; Р2 – сателлит солнечной шестерни 2; Р3 – сателлит коронной шестерни 1; S1 ­­– солнечная шестерня 1; S2 — солнечная шестерня 2; S3 — солнечная шестерня 3; Н1 – коронная шестерня 1; Н2 – коронная шестерня 2

Управление одинарным планетарным рядом производится посредством многодисковых муфт K1 и K3 и многодискового тормоза B1. Число сателлитов в планетарных рядах выбирается в зависимости от передаваемого крутящего момента.

Сдвоенный планетарный ряд управляется посредством многодисковой муфты K2, многодискового тормоза B2 и обгонной муфты F. В системе управления муфтами предусмотрены устройства динамической компенсации рабочего давления, которые делают работу муфт независящей от частоты вращения. Муфты K1, K2 и K3 служат для подвода крутящего момента к планетарным рядам, а с помощью тормозов B1 и B2, а также обгонной муфты обеспечивается передача реактивных моментов на картер коробки передач.

Давление в рабочих цилиндрах муфт и тормозов изменяется посредством регулирующих клапанов.

Обгонная муфта F представляет собою механизм, который работает параллельно с тормозом.

Что такое гидромеханическая коробка передач и как она работает

Сцепление и коробка переключения передач – это традиционные узлы любого отечественного или зарубежного автомобиля. Трансмиссия является элементом, обеспечивающим поступление крутящего момента от силового агрегата к колесам. Если раньше большинство транспортных средств оснащались механической коробкой, то сегодня все больше автолюбителей отдают предпочтение гидромеханической АКПП. Отчасти это связано с тем, что управление машиной упрощается, поскольку педаль сцепление отсутствует, а переключение скоростей происходит автоматическим образом.

Читайте также:  Принцип работы 4 тактного дизельного двигателя

АКПП в разрезе

Назначение комбинированной трансмиссии легкового авто

Образ жизни современных водителей существенно меняется и сегодня все больше требований предъявляются к созданию оптимальных комфортных условий во время вождения. Стандартные узлы автомобилей терпят существенные изменения, среди ярких примеров можно выделить комбинирование механической и гидравлической КП. Если говорить о гидромеханической трансмиссии и что это такое, первым делом стоит понять, в чем ее предназначение. Главное отличие заключается в плавном изменении вращающего движения. Облегченное управление позволило отказаться от использования сцепления, поскольку комбинированная КП отвечает за все процессы. При АКПП можно говорить о следующих ситуациях, касающихся управления авто:

  • Во время переключения скоростей трансмиссия отключается от силового агрегата.
  • Если дорожные условия меняются, величина вращающего момента также будет менять свое значение.

Использование АКПП на авто позволяет получить несколько неоспоримых преимущества. Помимо автоматизации переключения скоростей стоит отметить также повышение эксплуатационных характеристик силового агрегата и коробки и улучшение проходимости транспортного средства в условиях бездорожья.

Функции гидротрансформатора

Гидравлический трансформатор, по сути, являет собой усовершенствованную гидромуфту. Обычная муфта выполняет задачу простого вращения, то в случае АКПП добавляется увеличение крутящего положения. Агрегат выполняет несколько основных функций, одной из которых является демпфирующее действие во время вращательного движения. При постоянной разнице скорости вращения возникают потери, поэтому происходит блокировка, в результате которой вращающий момент начинает передаваться через демпфирующие пружины. Блокировочная муфта выполняет еще одну полезную функцию, предотвращение повышения расхода топлива. Говоря о функциях гидромеханической трансмиссии автомобиля, стоит отметить и некоторые негативные факторы.

Важно! При блокировке нередко наблюдается повышенное давление на важные компоненты мотора и трансмиссии. Фрикционные компоненты могут изнашиваться быстрей, а в масло могут попадать частицы, образовавшиеся в результате трения. В результате ходовые характеристики могут ухудшиться, а смена передачи перестанет быть плавной. Автовладельцам необходимо беречь коробку во время разгона или торможения.

Устройство гидротрансформатора

О том, что представляет устройство гидромеханической передачи, можно понять, изучив ее конструкцию. Главным узлами являются гидротрансформатор, механическая КП и механизмы управления. Гидротрансформатор – это главный компонент, а выполняет он практически ту же функцию, что и сцепление. Изучив конструкцию данной детали, можно заметить, что она состоит из трех колес, имеющих специальную форму. Первое колесо – насосное, его назначение выполнять связь между гидравлическим узлом и силовым агрегатом. Второе кольцо – турбинное, оно образует связь с первичным валом коробки. Третье колесо – реакторное, его функция состоит в усилении крутящего момента. Все три компонента закрыты посредством специального корпуса, внутренний объем которого на три четверти заполнен смазочным материалом. От двигателя крутящий момент поступает на насосную часть, затем посредством вращательных движений направляет на турбинное колесо смазочный материал, в результате чего усилие передается на первичный вал. По мере нагрузки гидротрансформатор в автоматическом режиме будет менять момент силы, который в свою очередь, передаваясь к механическим узлам, будет переключаться посредством фрикционных компонентов. Напор жидкости, проходящий от напорного диска к турбине, регулируется также в автоматическом режиме.

  • Подсистема ручного управления.
  • Система, вырабатывающая управляемые сигналы.
  • Элементы функционирования.
  • Автоматическая защита.
  • Измерительные узлы.
  • Исполнительная система.

Основа гидромеханического автомата (впрочем, слегка пошатнувшаяся в последнее время, о чем чуть ниже) – это гидротрансформатор. Аналогично сцеплению в механической трансмиссии роль гидротрансформатора – передача крутящего момента от двигателя к коробке передач с возможностью проскальзывания, дабы автомобиль мог плавно тронуться с места. Однако на этом сходство с фрикционным сцеплением заканчивается – внутри гидротрансформатор устроен совсем иначе.

Принцип его работы легко проиллюстрировать на следующем примере. Представим два вентилятора, установленные друг напротив друга. Если мы включаем один из них, то создаваемый им воздушный поток приводит в движения и второй вентилятор. Эта же идея реализована в гидротрансформаторе. В нем есть насосное колесо, вращаемое двигателем и создающее поток масла, и турбинное, связанное с валом коробки и воспринимающее давление потока. Разница с вентиляторами лишь в том, что насосное колесо осуществляет забор масла не с обратной стороны, а с передней центральной части, то есть является центробежным насосом. Отброшенное им вперед по внешнему контуру масло попадает на лопатки турбинного колеса, перенаправляется к центру и возвращается обратно. То есть циркуляция жидкости происходит фактически в замкнутом объеме между двух колес, что позволяет максимально их сблизить, уменьшив рассеяние потока и увеличив эффективность передачи крутящего момента.

Но самые интересные свойства гидротрансформатора связаны с наличием третьего колеса – реактора. Служит оно для воздействия на возвращающийся к насосному колесу поток и, соответственно, располагается в середине гидротрансформатора. Закреплено оно неподвижно, а потому попадающий на его лопатки поток создает направленную в обратную сторону силу реакции, которая дополнительно подкручивает турбинное колесо. Получается, что гидротрансформатор увеличивает крутящий момент на выходе! И чем больше разница в скорости вращения турбинного и насосного колеса, тем больше эта сила реакции потока, и тем значительнее увеличивается момент – в пределе он может умножаться в три раза. То, что нужно для уверенного старта с места, когда двигатель работает на оборотах холостого хода, а вал трансмиссии неподвижен.

Читайте также:  Изотермический прицеп для газели

Эти свойства гидротрансформатора – увеличивать крутящий момент и допускать долгое проскальзывание – вообще говоря, позволяют и вовсе обойтись без коробки передач. Например, BMW 750i 1986-го модельного года спокойно трогался с третьей передачи и на ней же достигал 250 км/ч! Но, конечно, такое под силу лишь избранным, да и то ценой ухудшения динамики и расхода топлива. Всем же остальным обойтись без механизма переключения трудновато.

В гидромеханическом автомате для изменения передаточного числа используются планетарные передачи. Это принципиально отличает его от механической трансмиссии с параллельными валами. В чем же преимущества такой конструкции? С планетарной передачей проще организовать автоматическую смену скоростей – для этого нужно лишь замыкать между собой отдельные её шестерни. Гораздо компактнее и сама передача – теоретически эта сборка из всего лишь пяти шестерен позволяет реализовать пять скоростей: 4 передних и 1 заднюю. И хотя на практике, вследствие конструктивных ограничений, приходится применять большее количество планетарный рядов, тем не менее, этот узел все равно остается очень небольшим.

Как он работает? В планетарной передаче есть три элемента: первый – центральная солнечная шестерня; второй — вращающиеся вокруг неё сателлиты – шестерни, чьи оси жестко связаны друг с другом; и третий — большое эпициклическое зубчатое колесо, обхватывающее сателлиты. Соответственно, процесс переключения здесь осуществляется установлением жесткой связи между двумя элементами из этой тройки или их блокировкой на корпус. Например, жесткое соединение солнечной шестерни и осей сателлитов дает прямую передачу – эпицикл уже не может проворовываться относительно них, и вся планетарная передача вращается как единое целое. Если же затормозить на корпус коробки оси сателлитов, то солнечная и эпициклическая шестерни начнут вращаться в разные сторону – получаем заднюю передач. И так далее.

Все эти торможения и блокировки осуществляются с помощью фрикционов и тормозных лент, а управляет ими сложная гидросистема, включающая в себя множество каналов, клапанов, гидроаккумуляторов и, конечно, насос, создающий давление масла. Эта гидравлика первоначально и реализовывала всю управляющую логику, причем опираясь всего на два параметра: нагрузку на двигатель и скорость автомобиля.

С распространением электроники в конце 80-ых годов автомат стал точнее оценивать условия движения. Например, он уже не будет нагружать слишком ранними переключениями еще непрогретый двигатель, а при смене передач учтет температуру собственного масла, то есть сделает поправку на его вязкость. Это особенно важно для обеспечения плавности переключения. Дело в том, что избежать провалов тяги позволяет так называемое перекрытие передач: включение следующей скорости, еще до выключения текущей передачи. Такой процесс требует точности: слишком малое перекрытие ведет к провалу тяги, а слишком большое – и вовсе резко затормозит автомобиль. Разумеется, электроника тут позволяет гораздо аккуратнее выдерживать необходимые моменты переключений. Увеличивает она и ресурс трансмиссии, корректируя работу в зависимости от степени износа. Но главное – она помогает улучшить экономичность.

Изначально гидромеханический автомат – далеко не самый эффективный способ передачи крутящего момента. Основные потери в нем связаны с гидротрансформатором – даже в установившемся режиме движения насосное и турбинное колесо проскальзывают относительно друг друга.Тратится энергия и на удерживание фрикционов и тормозных лент – масленый насос поддерживает давление в десятки атмосфер. В результате КПД автомата не превышает 85%, в то время как КПД механической коробки близок к 98%!

Чтобы улучшить этот показатель стали применять блокировку гидротрансформатора – на повышенной передаче, при достижении определенной скорости, встроенный фрикцион, похожий на обычное сцепление, жестко связывает турбинное и насосное колесо. Кстати, этот момент легко отследить по тахометру – обороты мотора слегка падают, будто включилась еще одна передача. В таком режиме КПД уже поднимается до 94%.

С развитием электронного управления блокировка гидротрансформатора стала производиться на всех передачах – фрикцион разжат лишь в момент старта и переключения скорости. При этом, правда, иногда страдает плавность переключений. Как показывает опыт наших замеров, многие современные автоматы уступают в этом плане старым моделям. Особенно это заметно на 6-ступенчатых моделях ZF – на их графике продольного ускорения отчетливо видно, как за одним провалом тяги в момент переключения следует второй рывок, вызванный уже блокировкой гидротрансформатора.

Некоторые пошли еще дальше. Инженеры Mercedes и вовсе отказались от гидротрансформатора – вместо него они стали применять сцепление. Правда, не сухое, как в механических трансмиссиях, а мокрое, выдерживающее более длительную пробуксовку. Замыкается оно в момент старта, и, соответственно, все переключения передач происходят при наличии жесткой связи коробки с двигателем. Это существенно поднимает требования к синхронизации процессов включения-выключения скоростей, но КПД возрастает до 97%, то есть сравнивается с показателями роботизированных механических коробок. Постоянное жесткое соединение с валом мотора означает и более линейные отклики на педаль газа, что востребовано в мощных спортивных моделях AMG.

Последняя же тенденция, которую уже нельзя не заметить – это рост числа передач. В середине прошлого десятилетия, когда появились 7-скоростные «роботы» с двумя сцеплениями, гидромеханический автомат явно отставал – 6-ступенчатые модели только начинали появляться. Но затем быстро последовали семи-, восьми скоростные, на подходе уже и 10-скоростные коробки. Разумеется, столь сложные агрегаты уже не отличаются надежностью и ресурсом – детали приходится сильно уменьшать в размерах, но зато по экономичности и разгонной динамике они обыгрывают механическую трансмиссию. Уступая последним в КПД, многоскоростные автоматы позволяют точнее удерживать мотор в оптимальном диапазоне оборотов, что и определяет, в конечном счете, динамические свойства автомобиля.

Многоступенчатость позволяет без ущерба для плавности ускорить и процесс смены передач, ведь перепад оборотов двигателя становится меньше. Впрочем, и раньше у автоматов не было проблем с быстродействием: например, 4-скоростная коробка ZF, устанавливаемая на BMW конца 80-ых годов, перещелкивала передачи за 0,3 с – среди протестированных нами автомобилей подобным быстродействием обладал только «робот» Porsche 911! Обычные же преселективные трансмиссии работают примерно в два раза медленнее.

Таким образом, у современного автомата практически нет слабых мест. Сохранив свои главные качества – плавность переключений и способность долгое время работать в режиме пробуксовки при движении на малых скоростях, он стал гораздо эффективнее и интеллектуальнее. Правда, пока все эти достижения доступны лишь на дорогих автомобилях – сложные, многоступенчатые автоматы, разумеется, и стоят немало, а потому сегмент недорогих моделей все-таки постепенно переходит на роботизированные коробки – в условиях борьбы за экономичность старые 4-, 5-скоростные автоматы уступают позиции. Но это лишь локальное поражение – в будущем гидромеханических коробок сомневаться не приходится.

Гидромеханическая коробка передач: принцип работы и устройство

Несмотря на растущую популярность автомобилей с автоматической коробкой передач, классическая механика по-прежнему в почете у многих водителей. Она надежнее, чем АКПП. Но при эксплуатации водитель постоянно вынужден работать с педалью сцепления. Это доставляет некие неудобства, особенно в пробке. Так появилась гидромеханическая коробка передач. Принцип работы ее и устройство рассмотрим в нашей сегодняшней статье.

Характеристика

Те водители, которые не хотят работать со сцеплением, отдают предпочтение именно этой трансмиссии. Гидромеханическая коробка передач выполняет сразу несколько функций. Она совмещает в себе сцепление и классическую коробку.

О конструкции

Устройство гидромеханической коробки передач предполагает наличие гидравлического трансформатора. Данный элемент, в зависимости от конструктивных особенностей, может быть двух-, трех- и многовальным. Сейчас производителями применяется планетарная автоматическая гидромеханическая коробка передач.

Как работает вальная КПП

На грузовых автомобилях и крупных автобусах чаще всего используется многовальная трансмиссия. Для того чтобы переключить передачу, здесь используются многодисковые муфты. Для их работы необходима смазка. Масло гидромеханической коробки передач значительно отличается по консистенции от «механики». В последнем случае оно более густое. Для того чтобы включить первую и заднюю скорость на гидромеханике, используются зубчатые муфты. Такая конструкция позволяет максимально плавно передавать крутящий момент от маховика на колеса.

Планетарные

Сейчас это более распространенная гидромеханическая коробка передач.

Как работает планетарная КПП

Ее алгоритм работы предельно прост. Переключение скоростей на планетарной гидромеханической трансмиссии производится при помощи фрикционных муфт. Также для сглаживания ударов при переключении на пониженную, применяют специальную тормозную ленту. Именно при работе «тормоза» снижается сила передачи крутящего момента. Но при этом переключение скоростей более плавное, нежели у вальных аналогов.

В основе планетарной трансмиссии лежит гидравлический трансформатор. Данный элемент расположен между двигателем и КПП. ГДФ состоит из нескольких составляющих:

В народе данный элемент называют «бубликом» из-за его характерной формы.

Особенности конструкции планетарной КПП

Планетарная гидромеханическая коробка передач состоит из ведущего вала, на котором находится сочлененная шестерня. Также здесь имеются сателлиты, вращающиеся на отдельных осях. Данные элементы вводятся в зацепление с внутренними зубьями коробки и коронной шестерней. Передача крутящего момента осуществляется благодаря действию тормозной ленты. Она затормаживает коронную шестерню. По мере разгона автомобиля, их обороты растут. Задействуется ведомый вал, который воспринимает передачу крутящего момента от ведущего.

О КПД

Что касается коэффициента полезного действия, он на порядок ниже, чем на вальных КПП.

Обслуживание и ремонт гидромеханической коробки передач

При эксплуатации данной трансмиссии, необходимо следить за уровнем масла. Данная жидкость здесь является рабочей. Именно масло задействует турбины для передачи крутящего момента. На механических же коробках оно просто смазывает трущиеся шестерни. Производители рекомендуют производить замену масла на гидромеханических коробках каждые 60 тысяч километров. Стоит отметить, что в конструкции такой КПП имеется свой фильтр. Он тоже меняется при достижении данного срока. Эксплуатация на низком уровне масла грозит пробуксовкой и перегревом трансмиссии.

Читайте также:  Бульдозер т 800 технические характеристики

Как продлить ресурс

Чтобы увеличить срок эксплуатации гидромеханической коробки, необходимо следить за уровнем масла. При его недостаточном количестве возникает перегрев коробки. Рабочая температура не должна превышать 90 градусов. Современные автомобили оснащаются датчиком давления масла. Его загорелась контрольная лампа, не стоит игнорировать ее. В дальнейшем это может спровоцировать поломку гидротрансформатора.

Заключение

Итак, мы выяснили, что собой представляет гидромеханическая коробка передач. Как видите, при должном обслуживании она будет такой же надежной, как механическая. При этом водителю не придется постоянно выжимать сцепление.

Что такое гидромеханическая коробка передач

Одним из элементов системы управления автомобилем является гидромеханическая трансмиссия. Благодаря ей водитель может переключать передачи плавно и без рывков. Гидромеханическая коробка передач — что это такое? Давайте разберемся.


Работает гидротрансформатор за счет особой циркуляции масла, которое попадает в него с внешней части насосного диска, затем движется на турбинное колесо и возвращается через центральную часть этого узла. Завершается цикл циркуляции масла на насосном диске.Замена крутящего момента в гидротрансформаторе происходит автоматически по мере возрастания нагрузки двигателя. Этот узел отправляет на коробку силу крутящего момента, где при помощи фрикционов происходит включение передач. Нужное передаточное число определяется трансформатором автоматически, в зависимости от его значения изменяется напор циркулирующего масла.

Ссылка на основную публикацию
Adblock
detector