Принцип работы четырехтактного дизельного двигателя - Motokomo.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Принцип работы четырехтактного дизельного двигателя

KIA Venga PAPPин dieselёк › Бортжурнал › Дизельный двигатель

Я хочу собрать выжимку из основных ценных фактов про дизель. Цель — изучаю сам, помогу кому то еще, надеюсь.

Дизельный двигатель
Дизельный двигатель — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.
В дизельных двигателях происходит сжатие чистого воздуха, а не топливо-воздушной смеси. Топливо впрыскивается в конце такта сжатия.

Работа четырёхтактного дизельного двигателя.

1-й такт. Впуск. Соответствует 0°—180° поворота коленвала. Через открытый впускной клапан воздух поступает в цилиндр, на 190—210° клапан закрывается. При этом какое то время при этом открыт и выпускной клапан. Время совместного открытия клапанов называется перекрытием клапанов.
2-й такт. Сжатие. Соответствует 180° — 360° поворота коленвала. Поршень, двигаясь к ВМТ, сжимает воздух от 16 до 25 раз.
3-й такт. Рабочий ход, расширение. Соответствует 360°—540° поворота коленвала. При распылении топлива в горячий воздух происходит инициация сгорания топлива, то есть частичное его испарение. Наконец, оно вспыхивает и сгорает по мере поступления из форсунки, а продукты горения, расширяясь, двигают поршень вниз. Впрыск и, соответственно, воспламенение топлива происходит чуть раньше момента достижения поршнем мёртвой точки вследствие некоторой инертности процесса горения. Отличие от опережения зажигания в бензиновых двигателях в том, что задержка необходима только из-за наличия времени инициации, которое в каждом конкретном дизеле — величина постоянная и изменению в процессе работы не подлежит. Сгорание топлива в дизеле происходит, таким образом, столько времени, сколько длится подача порции топлива из форсунки. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов, из-за чего двигатель развивает большой крутящий момент.

Из этого следуют два важных вывода:
1. Процесс горения в дизеле длится ровно столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода. Это приводит к тому, что рабочий процесс в дизеле протекает при постоянном давлении.
2. Соотношение топливо/воздух в цилиндре дизеля может существенно отличаться от стехиометрического, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объема камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс несгоревших углеводородов с сажей ( черный дым из глушителя ).

4-й такт. Выпуск. Соответствует 540°—720° поворота коленвала. Поршень идёт вверх, через открытый на 520—530° выхлопной клапан, выталкивая отработавшие газы из цилиндра.
Далее цикл повторяется.

В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:
Дизель с неразделённой камерой: камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство — минимальный расход топлива. Недостаток — повышенный шум («жесткая работа»), особенно на холостом ходу. В настоящее время ведутся интенсивные работы по устранению указанного недостатка. Например, в системе Common Rail для снижения жёсткости работы используется предвпрыск.
Дизель с разделённой камерой: топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой либо предкамерой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в оную камеру, интенсивно завихрялся. Это способствует хорошему перемешиванию впрыскиваемого топлива с воздухом и более полному сгоранию топлива. Такая схема долго считалась оптимальной для легких дизелей и широко использовалась на легковых автомобилях. Однако, вследствие худшей экономичности, последние два десятилетия идёт активное вытеснение таких дизелей двигателями с нераздельной камерой и с системами подачи топлива Common Rail.

(из материалов википедии)

Вообще нельзя оперировать понятием бедной/богатой смеси для дизеля? Ведь не так работает, как бензин.

Возьму на себя смелость разместить здесь видеоматериалы. Взято с ютюба по любезной подсказке коллеги Barbosi )) Материал учебный, никакой суперинформации не содержит, и надеюсь, что никто возражать не будет.


Рабочий цикл четырехтактного дизельного двигателя.

Рабочий цикл четырехтактного дизельного двигателя проходит в той же последовательности, что и цикл четырехтактного карбюраторного двигателя. Отличие заключается в характере протекания рабочего цикла, в способе смесеобразования и воспламенения топлива.

Первый такт – впуск (рис. 1, а). Поршень 5 движется от в.м.т. к н.м.т., впускной клапан 1 открыт. В цилиндр 4 под действием перепада давления в атмосфере и цилиндре поступает воздух, перемешиваясь с остаточными газами. Давление в конце такта 0,08. 0,09 МПа, температура воздуха 320. 340 К.

Второй такт – сжатие (рис. 1, б). Оба клапана закрыты. Поршень 5 движется от н.м.т. к в.м.т., сжимая воздух. Вследствие большой степени сжатия (14. 18) давление в конце этого такта достигает 3,5. 4 МПа, а температура — 750. 950 К (превышает температуру самовоспламенения топлива). При положении поршня, близком к в.м.т., в цилиндр через форсунку 2 впрыскивается жидкое топливо, подаваемое насосом 6 высокого давления. Форсунка обеспечивает тонкое распыление топлива в сжатом воздухе. Топливо, впрыснутое в цилиндр, смешивается с нагретым воздухом и остаточными газами, образуя рабочую смесь. Большая часть топлива воспламеняется и сгорает. Температура газов достигает 1900. 2400 К, а давление — 5,5. 9 МПа.

Третий такт – расширение (рабочий ход) (рис. 1, в). Оба клапана закрыты. Поршень 5 под давлением расширяющихся газов движется от в.м.т. к н.м.т. и через шатун вращает коленчатый вал, совершая полезную работу. В начале такта сгорает остальная часть топлива. К концу рабочего хода давление газов уменьшается до 0,2. 0,3 МПа, температура — до 900. 1200 К.

Четвертый такт – выпуск (рис. 1, г). Выпускной клапан 3 открывается. Поршень 5 движется от н.м.т. к в.м.т. и через открытый клапан выталкивает отработавшие газы из цилиндра в атмосферу. К концу такта давление газов 0,11. 0,12 МПа, температура 650. 900 К.

Рис. 1. Рабочий цикл одноцилиндрового четырехтактного дизеля: а — такт впуска; б — такт сжатия; в — такт расширения; г —такт выпуска; 1—впускной клапан; 2 — форсунка; 3— выпускной клапан; 4— цилиндр; 5—поршень; 6—топливный насос высокого давления

Далее рабочий цикл повторяется.

В течение рабочего цикла описанных двигателей только при рабочем ходе поршень перемещается под давлением газов и посредством шатуна приводит во вращательное движение коленчатый вал. При выполнении остальных тактов (выпуска, впуска и сжатия) поршень нужно перемещать, вращая коленчатый вал. Это вспомогательные такты, которые осуществляются за счет кинетической энергии, накопленной маховиком во время рабочего хода. Маховик, обладающий значительной массой, крепят на конце коленчатого вала.

Система смазки. Назначение, устройство, принцип действия.

Система смазки (другое наименование – смазочная система) предназначена для снижения трения между сопряженными деталями двигателя. Кроме выполнения основной функции система смазки обеспечивает охлаждение деталей двигателя, удаление продуктов нагара и износа, защиту деталей двигателя от коррозии.

Система смазки двигателя включает поддон картера двигателя с маслозаборником, масляный насос, масляный фильтр, масляный радиатор, которые соединены между собой магистралями и каналами.

Поддон картера двигателя предназначен для хранения масла. Уровень масла в поддоне контролируется с помощью щупа, а также с помощью датчика уровня и температуры масла.

Масляный насос предназначен для закачивания масла в систему. Масляный насос может приводиться в действие от коленчатого вала двигателя, распределительного вала или дополнительного приводного вала. Наибольшее применение на двигателях нашли масляные насосы шестеренного типа.

Масляный фильтр служит для очистки масла от продуктов износа и нагара. Очистка масла происходит с помощью фильтрующего элемента, который заменяется вместе с заменой масла.

Для охлаждения моторного масла используется масляный радиатор. Охлаждение масла в радиаторе осуществляется потоком жидкости из системы охлаждения.

Читайте также:  Принцип работы КПП УАЗ буханка

Давление масла в системе контролируется специальным датчиком, установленным в масляной магистрали. Электрический сигнал от датчика поступает к контрольной лампе на приборной панели. На автомобилях также может устанавливаться указатель давления масла.

Датчик давления масла может быть включен в систему управления двигателем, которая при опасном снижении давления масла отключает двигатель.

На современных двигателях устанавливается датчик уровня масла и соответствующая ему сигнальная лампа на панели приборов. Наряду с этим, может устанавливаться датчик температуры масла.

Для поддержания постоянного рабочего давления в системе устанавливается один или несколько редукционных (перепускных) клапанов. Клапаны устанавливаются непосредственно в элементах системы: масляном насосе, масляном фильтре.

Принцип действия системы смазки.

В современных двигателях применяется комбинированная система смазки, в которой часть деталей смазывается под давлением, а другая часть – разбрызгиванием или самотеком (рис. 2).

Смазка двигателя осуществляется циклически. При работе двигателя масляный насос закачивает масло в систему. Под давлением масло подается в масляный фильтр, где очищается от механических примесей. Затем по каналам масло поступает к коренным и шатунным шейкам (подшипникам) коленчатого вала, опорам распределительного вала, верхней опоре шатуна для смазки поршневого пальца.

На рабочую поверхность цилиндра масло подается через отверстия в нижней опоре шатуна или с помощью специальных форсунок.

Остальные части двигателя смазываются разбрызгиванием. Масло, которое вытекает через зазоры в соединениях, разбрызгивается движущимися частями кривошипно-шатунного и газораспределительного механизмов. При этом образуется масляный туман, который оседает на другие детали двигателя и смазывает их.

Рис. 2. 1 – масляный поддон, 2 – датчик уровня и температуры масла, 3 – масляный насос, 4 – редукционный клапан, 5 – масляный радиатор, 6 – масляный фильтр, 7 – перепускной клапан, 8 – обратный клапан, 9 – датчик давления масла, 10 – коленчатый вал, 11 – форсунки, 12 – распределительный вал выпускных клапанов, 13 – распределительный вал впускных клапанов, 14 – вакуумный насос, 15 – турбонагнетатель, 16 – стекание масла, 17 – сетчатый фильтр, 18 – дроссель

Под действием сил тяжести масло стекает в поддон и цикл смазки повторяется.

На некоторых спортивных автомобилях применяется система смазки с сухим картером. В данной конструкции масло храниться в специальном масляном баке, куда закачивается из картера двигателя насосом. Картер двигателя всегда остается без масла – «сухой картер». Применение данной конструкции обеспечивает стабильную работу системы смазки во всех режимах, независимо от положения маслозаборника и уровня масла в картере.

Принцип работы и устройство дизельного двигателя

Конструктивные особенности и эксплуатационные характеристики предопределили страсть или отторжение автомобилистов по отношению к агрегатам на “тяжелом топливе”. Так как же работает дизельный двигатель, каково его устройство, принцип работы и преимущества?

Времена, когда автомобиль с дизельными моторами ассоциировались с чадящими и тихоходными, давно остались за поворотом. Каждый автомобилист знает, что транспортное средство с агрегатом на “тяжелом топливе” издает характерные тарахтящие звуки, его выхлоп странно пахнет. Современные моторы награждают своих владельцев умеренным расходом топлива, впечатляющей эластичностью (крутящим моментом, доступным в относительно широком диапазоне оборотов) и иногда ошеломительной динамикой на зависть некоторым бензиновым автомобилям. Но при этом они требовательны к качеству солярки, а ремонт компонентов топливной системы может быть весьма дорогим.

Особенности конструкции

Дизельные двигатели, разумеется, не имеют таких колоссальных отличий как роторно-поршневой двигатель Ванкеля, устройство которого абсолютно не похоже на “анатомию” традиционного ДВС, но у него имеется ряд особенностей, которые проводят между ним и бензиновыми моторами черту.

У дизеля также есть кривошипно-шатунный механизм, но его степень сжатия существенно выше – 19-24 единицы против 9-11 единиц соответственно. Принципиальное отличие дизельного двигателя от бензинового заключается в том, как формируется, воспламеняется и сгорает топливно-воздушная смесь.

У дизельного ДВС отсутствуют свечи зажигания и, соответственно, воспламенение топливно-воздушной смеси происходит от сжатия. При этом, воздух и солярка подаются раздельно. Также следует отметить, что практически ни один современный дизель не обходится без системы наддува, которая используется для повышения рабочих характеристик агрегата. Для оптимизации наддува в максимально широком диапазоне оборотов используются турбонагнетатели с изменяемой геометрией. Дизельный агрегат имеет более высокий коэффициент полезного действия, но он тяжелее и выдает больший крутящий момент при низких оборотах, нежели бензиновый ДВС.

Принцип работы дизельного двигателя

Как работает дизельный двигатель и, самое главное, как происходит воспламенение топлива в камере сгорания, если у агрегата данного типа нет свечей зажигания? Сперва воздух поступает в цилиндры. В конце такта сжатия, когда поршень почти достиг верхней мертвой точки, температура воздуха в камере сгорания достигает высоких значений (порядка 700-800 градусов) и затем в цилиндры впрыскивается дизельное топливо, которое воспламеняется самостоятельно, без искрового зажигания. Тем не менее, свечи в дизельном агрегате все-таки есть, но то – свечи накаливания, а не зажигания, которые нагревают камеру сгорания для облегчения запуска двигателя в холодное время.

Работа свечи накаливания в дизельном двигателе

Они представляет собой спираль (бывают с металлической и керамические), могут быть установлены в вихревой камере или в форкамере (если речь идет об агрегатах с раздельной камерой сгорания) или непосредственно в камере сгорания (если она нераздельная). При включении зажигания свечи накаливания практически мгновенно, за считанные секунды они раскаляются до температур в районе тысячи градусов и нагревают воздух в камере сгорания, облегчая процесс самовоспламенения топливно-воздушной смеси.

Типы дизельных двигателей

Широко распространены моторы с раздельной камерой сгорания – топливо впрыскивается в специальную камеру в головке блока над цилиндром и соединенную с ним каналом, а процесс горения происходит не совсем так как у бензиновых ДВС. В этой вихревой камере поток воздуха интенсивнее закручивается, что способствует более эффективному смесеобразованию и самовоспламенению, которое продолжается в основной камере сгорания. Кстати, дизельные моторы с раздельной камерой сгорания менее шумные из-за того, что применение вихревой камеры снижает интенсивность нарастания давления при самовоспламенении.

У дизелей с неразделенной камерой сгорания процесс самовоспламенения происходит непосредственно в надпоршневом пространстве. Агрегаты данного типа несколько шумнее.

Что такое Common Rail

Common Rail – современная система впрыска топлива, разработанная компанией Bosch и использующая принцип подачи солярки к форсункам от топливной рампы, являющейся аккумулятором высокого давления. Common Rail позволяет сделать агрегат тише, при этом более экономичным и экологичным. Еще одним преимуществом использования общей топливной рампы являются широкие возможности регулировки давления топлива и момента его впрыска, поскольку эти процессы разделены.

Четырехтактный двигатель, устройство и принцип работы

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Автомобильные двигатели чаще всего работают по четырёхтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения и выпуска.

В карбюраторном четырёхтактном двигателе рабочий цикл происходит следующим образом.

Рабочий цикл карбюраторного двигателя:

– Такт сжатия
Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степенью сжатия. Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако, для двигателя с большей степенью сжатия требуется топливо с большим октановым числом, которое дороже.
Такт расширения, или рабочий ход

Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы сгорание топлива успело, полностью закончится к моменту достижения поршнем НМТ, то есть для наиболее эффективной работы двигателя. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством (центробежным и вакуумным регулятором, воздействующим на прерыватель). В современных двигателях для регулировки угла опережения зажигания используют электронику.

Читайте также:  Устройство и принцип работы самоходных автомобильных подъемников

Гифка наглядно демонстрирует процесс работы четырехтактного двигателя

– Такт выпуска
После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет выхлопные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается, и цикл начинается сначала.

Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемещается с остаточными отработавшими газами и называется рабочей смесью.

Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06-0,12.

По отношению к рабочему ходу такты впуска, сжатия и выпуска являются вспомогательными.

Рабочий цикл дизельного двигателя
Рабочие циклы четырёхтактного дизеля и карбюраторного двигателя существенно различаются по способу смесеобразования и воспламенения рабочей смеси. Основное отличие состоит в том, что в цилиндр дизеля при такте впуска поступает не горючая смесь, а воздух, который из–за большой степени сжатия нагревается до высокой температуры, а затем в него впрыскивается мелкораспыленное топливо, которое под действием высокой температуры воздуха самовоспламеняется.

Читайте также

В четырёхтактном дизеле рабочие процессы происходят следующим образом.

Поршень движется от НМТ к ВМТ. Впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает имеющийся в цилиндре воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива.

– Такт расширения, или рабочий ход
При подходе поршня к ВМТ в цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом высокого давления (ТНВД). Впрыснутое топливо, перемешиваясь с нагретым воздухом, самовоспламеняется и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. Под действием давления газов поршень перемещается от ВМТ к НМТ. Происходит рабочий ход.

– Такт выпуска
Поршень перемещается от НМТ к ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

На этом видео показана работа реального двигателя. Камера встроена в цилиндр блока.

Недостатки четырёхтактных двигателей:

Все холостые ходы (впуск, сжатие, выпуск) совершаются за счёт кинетической энергии, запасённой кривошипно шатунным механизмом и связанными с ним деталями во время рабочего хода, в процессе которого химическая энергия топлива превращается в механическую энергию движущихся частей двигателя. Поскольку сгорание происходит в доли секунд, то оно сопровождается быстрым увеличением нагрузки на крышку (головку) цилиндра, поршень и другие детали двигателя внутреннего сгорания. Наличие такой нагрузки неизбежно приводит к необходимости увеличить массу движущихся деталей (для повышения прочности), что в свою очередь сопровождается ростом инерционных нагрузок на движущиеся детали.

Уступают по мощности двухтактным.

Преимущества четырёхтактных двигателей:

В отличие от двухтактного двигателя, в котором смазка коленвала, подшипников коленвала, компрессионных колец, поршня, пальца поршня и цилиндра осуществляется благодаря добавлению масла в топливо; коленвал четырехтактного двигателя находится в масляной ванне. Благодаря этому нет необходимости смешивать бензин с маслом или доливать масло в специальный бачок. Достаточно залить чистый бензин в топливный бак и можно ехать, при этом отпадает необходимость покупки специального масла для 2-тактных двигателей.

Так же на зеркале поршня и стенках глушителя и выхлопной трубы образуется значительно меньше нагара. К тому же, в 2-тактном двигателе происходит выброс топливной смеси в выхлопную трубу, что объясняется его конструкцией.

Читайте также

Пишите, звоните до 21: 00 по Москве:

©Проект-Технарь, 2010-2020
Все работы, чертежи и связанные с ними материалы принадлежат их авторам и предоставляются только в ознакомительных целях.

Двухтактный дизель — будущее лёгкой авиации

!Двухтактный дизель — будущее лёгкой авиации // Дмитрий Алемасов (Dmitry_A)

В авиации к двигателям подход особый. Самая, пожалуй, важная характеристика — это удельная мощность (или удельная тяга), то есть количество киловатт или лошадиных сил (или ньютонов) на единицу массы. Оно и понятно. Если мы установим на автомобиль тяжёлый двигатель, автомобиль всё равно поедет. А вот самолёт с тяжёлым двигателем может просто не взлететь. Из коммерчески выпускаемых ныне авиационных двигателей самыми лучшими по этому показателю являются турбореактивные (ТРД). Однако они выдают желаемые показатели при весьма высоких оборотах, поэтому требуют очень высокой культуры производства и, следовательно, дороги. Газотурбинные (ГТД), или турбовальные (ТВД), двигатели несколько тяжелее, так как в них турбина вращает не только компрессор, но и понижающий редуктор — дополнительный механизм, обладающий немалой массой. Они тоже очень дороги, но имеют свои преимущества. Например, они экономичны в диапазоне скоростей до 600 км/ч, и ещё могут устанавливаться на вертолёты.

Тем не менее, в классе мощностей до 200-250 л.с. ГТД фактически отсутствуют, по причине дороговизны. Это по-прежнему царство поршневых двигателей.

В лёгкой авиации самым массовым типом ДВС является 4-тактный карбюраторный оппозитный воздушного охлаждения. Конструкция таких двигателей отработана десятилетиями — например, оппозитный Лайкоминг был разработан ещё до Второй мировой войны. Однако в последнее время обнаружилась угроза дальнейшему существованию этих двигателей. Дело в том, что они рассчитаны на применение специального авиационного бензина. А нынешний мировой авиапарк в основном потребляет реактивные топлива, базирующиеся на керосине, производство авиационного бензина сократилось, и он перешёл в разряд дефицита. Энтузиасты лёгкой авиации пробуют разные пути выхода из бензинового тупика. Кто-то пытается конвертировать имеющиеся конструкции под доступный автомобильный бензин, а кто-то предлагает новую (то есть хорошо забытую старую) альтернативу — 2-тактный авиационный дизель.

Маленькая квази-теоретическая лекция

Тактом рабочего цикла ДВС является ход поршня от одной мёртвой точки до другой. Один такт соответствует 180-градусному повороту (полуобороту) коленчатого вала. При 4-тактном процессе рабочий цикл осуществляется за два оборота вала, при 2-тактном — за один.

Что касается 4-тактного рабочего цикла, то между схемами Дизеля и Отто различий немного. Присутствуют те же 4 такта: впуск — сжатие — расширение — выпуск. Сначала открывается впускной клапан, поршень идёт вниз, под действием создающегося разрежения в цилиндр поступает свежая топливовоздушная смесь или воздух — это такт впуска. Затем клапан закрывается, поршень идёт вверх — происходит сжатие. Следующий такт: сжатая смесь воспламеняется искрой или в сжатый воздух форсунка впрыскивает топливо, которое самовоспламеняется, поршень под действием этого идёт вниз — это расширение, или рабочий ход поршня. Двигатель совершает полезную работу именно в течение такта расширения. Потом поршень идёт вверх, открывается выпускной клапан, через который продукты сгорания топлива выходят в атмосферу — это такт выпуска.

Главное, что в дизеле сжимается не рабочая смесь, а чистый воздух, и топливо впрыскивается в камеру сгорания в момент наивысшего сжатия, отчего и воспламеняется.

В автопроме поэтому некоторые легковые дизели конструировались на основе существующих бензиновых моторов. Чугунный блок и поддон оставались практически без изменений; заново разрабатывалась головка блока цилиндров; поршни, шатуны и коленвал заменялись на усиленные. Ну и ставилась дизельная топливная аппаратура.

Читайте также:  Кран либхер 50 тонн характеристики

В случае с двухтактным процессом всё уже не так просто. Такты условно называются сжатие и расширение. Как видно, места отдельным тактам впуска и выпуска здесь не нашлось. Это не случайно. Хотя в двухтактном двигателе процессы впуска и выпуска присутствуют, для их осуществления необходимо, чтобы давление на входе в цилиндр было выше атмосферного. То есть нужен принудительный наддув. Те, кто знаком с двухтактными мотоциклетными бензиновыми двигателями, могут возразить: на мотоциклах нет никаких турбо- или механических компрессоров. Отдельного компрессора в мотоциклетном двухтактнике действительно нет. Функция компрессора возложена на картер двигателя.

В простых мотоциклетных моторах нет клапанов в головке цилиндра, вместо них существуют впускные и выпускные окна в стенках цилиндра, перекрываемые телом поршня. Впускные окна связаны с карбюратором не напрямую, а через перепускные каналы, выходящие в картер. В течение хода поршня вверх нижний край открывает окно, на котором находится карбюратор, рабочая смесь под действием разрежения, создаваемого идущим вверх поршнем, устремляется в картер. Когда поршень идёт вниз, он перекрывает это окно, рабочая смесь начинает сжиматься. Поршень идёт далее вниз, открывая перепускные окна, рабочая смесь под давлением подаётся в цилиндр, где вытесняет отработанные газы в выпускное окно. Поршень идёт снова вверх, и процессы под его днищем повторяются, а в это время в цилиндре происходит сжатие рабочей смеси. Затем сжатая смесь воспламеняется свечой, и поршень идёт вниз, совершая такт расширения, или рабочий ход.

Описанный двухтактный процесс имеет неустранимые недостатки. Так как детали кривошипно-шатунного механизма омываются рабочей смесью, необходимо добавлять моторное масло непосредственно в топливо, что делает его в буквальном смысле горюче-смазочным материалом. То есть расход масла значительно выше, чем в 4-тактных двигателях. К тому же из-за совмещённости по времени процессов впуска и выпуска довольно много рабочей смеси выбрасывается в атмосферу вместе с выхлопом. (Смесь может выбрасываться также из картера обратно во впускной тракт — это преодолевается установкой клапана, обычно лепесткового, между карбюратором и фланцем впускного канала.) Всё это отрицательно сказывается на экономичности и экологичности. В принципе, для устранения этого возможно применить схему газораспределения, подобную 4-тактным двигателям (с клапанами и распредвалом), но в таком случае обязателен отдельный нагнетатель, то есть двигатель станет заведомо сложнее атмосферного (безнаддувного) 4-тактника.

Дизель, подобный мотоциклетному мотору, не сделаешь. В цилиндр надо подавать чистый воздух, которому в картере делать нечего — он там будет выдавливать имеющуюся смазку из трущихся узлов. Поэтому двухтактные дизельные двигатели (танковые и судовые) больше похожи на четырёхтактные. У них также есть масло в картере и клапана в головке блока цилиндров. Однако кроме клапанов, у них ещё есть окна в стенках цилиндров. Обычно через боковые окна нагнетается воздух, а выпуск производится через клапаны.

Цикл происходит так: поршень идёт вниз и открывает впускное окно, через которое внешним нагнетателем подаётся воздух; затем поршень начинает движение вверх; пока впускное окно не закрылось полностью, открывается выпускной клапан в головке, и отработанные газы вытесняются в выпускной тракт; закрывается клапан, перекрывается впускное окно, воздух сжимается движением поршня к верхней мёртвой точке и от сжатия нагревается; в верхней мёртвой точке форсунка впрыскивает в цилиндр топливо, которое от соприкосновения с горячим воздухом воспламеняется; поршень идёт вниз, совершая рабочий ход, пока не откроет впускное окно; далее см. начало абзаца.

На форуме avia.ru упоминалось, что клапан в головке может быть впускным, а боковое окно работать на выпуск. Думаю, что в этом есть своя выгода, особенно для дизелей воздушного охлаждения: снижается теплонапряжённость головки. Но вот проводить газораспределение только через клапаны в головке, на мой взгляд, невыгодно: цилиндр в таком случае продувается хуже, и воздуха (а значит, и кислорода) в цилиндр попадает меньше – топливо может сгорать не полностью. Примерно так же дело обстоит и с газораспределением только через окна, однако при этом можно избавиться от распредвала и клапанов.

Преимущества дизелей как таковых: использование в качестве топлива более дешёвых и более энергоёмких фракций нефти; больший крутящий момент на валу; отсутствие системы зажигания (тут к месту афоризм, приписываемый конструкторам дизеля В-2: “Самая надёжная деталь — та, которой нет”).

Недостатки дизелей как таковых: низкая удельная мощность, что обусловлено необходимостью усиления конструкции (сгорание топлива не такое плавное, как в бензиновом двигателе, плюс в 2 раза большая степень сжатия — а иначе откуда большой крутящий момент возьмётся?); наличие куда более сложной и привередливой системы питания, нежели у бензинового двигателя.

Преимущества двухтактных дизелей: вдвое большая частота рабочих ходов, что решает проблему удельной мощности; более плавная работа двигателя.

Недостатки двухтактных дизелей: обязательность механического компрессора или турбонаддува.

Хорошо забытое старое

Первые работоспособные авиационные дизели были сконструированы до Второй мировой войны моторостроительным подразделением Юнкерса — ЮМО. Планировалось ставить их на трансатлантические авиалайнеры и дальние бомбардировщики.

Конструировались они и у нас — А. Д. Чаромским для бомбардировщиков Ер-2 и Пе-8. Однако довести их до беспроблемной эксплуатации не удалось — в войну было не до изысканий. А после войны началась реактивная эра, и потенциальную нишу моторов для сверхдальних перелётов заняли ТВД; потом и турбореактивные двигатели, обзаведясь вторым контуром, стали достаточно экономичными. Об авиационных дизелях забыли. До 90-х годов.

В последнее время по крайней мере две фирмы — немецкая Zoche и британская DeltaHawk — предпринимают усилия по сертификации и выводу на рынок авиационных двухтактных дизелей в диапазоне мощностей до 300 л.с. Общее между ними — бесклапанное (то есть через окна в цилиндре) газораспределение; наличие двух нагнетателей — механического компрессора и турбокомпрессора. Гамма продукции Zoche включает звездообразные 2-х(70 л.с.), 4-х(150 л.с.) и 8-цилиндровые(300 л.с.) двигатели воздушного охлаждения. Цилиндро-поршневые группы одинаковы для всех вариантов. Механический нагнетатель является также пневмостартером, что позволяет надёжно пускать двигатель при любой температуре. Система смазки обеспечивает работу двигателя при любом положении в пространстве.

Двухтактный дизельный цикл — удачный вариант для моторов лёгкой авиации. За счёт вдвое большего числа рабочих ходов и использования наддува они могут превзойти по удельной мощности традиционные оппозитники, которые плохо переносят турбонаддув. Наличие наддува также благоприятно сказывается на высотности двигателя. Системы зажигания (которая на бензиновых двигателях нередко дублируется для надёжности) у дизелей просто нет. То есть заглушить дизель можно лишь прервав подачу топлива (бензиновый двигатель этим способом тоже глушится). Дизель не боится низких температур, чреватых обледенением карбюратора (в том числе и за отсутствием карбюратора как такового) — наоборот, ему холодный воздух даже идёт на пользу. Топливо для дизеля дешевле и доступнее.

Правда, при эксплуатации на авиакеросине есть свои сложности. Дело в том, что самый сложный и точный агрегат дизеля — топливный насос высокого давления — смазывается маслянистыми фракциями дизельного топлива. А керосин от этих фракций очищен. Поэтому в реактивное топливо необходимо добавлять специальную смазывающую присадку.

У дизелей в лёгкой авиации неплохие перспективы. Если кто-либо из крупных мировых моторостроителей проявит к ним интерес, и сможет предложить массовый недорогой сертифицированный дизель, то ситуация несомненно изменится в их пользу. До тех пор, пока не появится массовый недорогой сертифицированный ГТД.

Ссылка на основную публикацию
Adblock
detector