Системы карбюратора и принцип их работы

Содержание
  1. Системы карбюратора и принцип их работы
  2. Конструкция и принцип работы карбюратора
  3. Устройство и принцип работы карбюратора
  4. Видео: Устройство карбюратора (Специально для АВТОмладенцев)
  5. Что еще входит в конструкцию?
  6. 1. Система пуска
  7. 2. Главная дозирующая система
  8. 3. Система ХХ
  9. Видео: Карбюратор ОЗОН. Диагностика и Ремонт
  10. 4. Ускорительный насос
  11. Экономайзер и эконостат
  12. Обслуживание карбюратора
  13. Устройство и принцип работы карбюратора
  14. Из чего состоит стандартный карбюратор
  15. Поплавковая камера
  16. Диффузор
  17. Распылитель
  18. Жиклер
  19. Дроссельная и воздушная заслонки
  20. Какие еще системные элементы дополняют конструкцию карбюратора?
  21. Пусковая система карбюратора
  22. Дозирующая система карбюратора
  23. Холостой ход
  24. Ускорительный насос
  25. Экономайзер и эконостат
  26. Карбюратор: конструкция и принцип работы
  27. Немного истории
  28. Модернизация
  29. Дальнейшее развитие
  30. Карбюратор и инжектор
  31. Виды карбюраторов
  32. Устройство поплавкового карбюратора
  33. Дроссельная заслонка : холодный пуск и холостой ход
  34. Сильные и слабые стороны устройства
  35. Система питания карбюраторного двигателя
  36. Дозирующие устройства карбюратора и принцип их действия

Системы карбюратора и принцип их работы

Конструкция и принцип работы карбюратора

Сейчас все современные бензиновые двигатели комплектуются инжекторной системой питания. За счет того, что инжектор является более совершенным, то он практически вытеснил карбюратор на автотранспорте. Но по дорогам колесит еще большое количество автомобилей, двигатель которых оборудован карбюраторной системой.

Карбюратор — это основной узел такой системы, и главная его задача – приготовление топливовоздушной смеси в необходимой пропорции для последующей её подачи в камеры сгорания двигателя.

Всего имеется три вида карбюраторных систем, одна из которых – барботажная вовсе не используется, а две другие, включающие в конструкцию игольчато-мембранный и поплавковый карбюраторы вполне еще применимы и встретить их можно на самой разнообразной технике.

Из двух последних, на автотранспорте использовался только карбюратор поплавкового типа. Игольчато-мембранный же тип можно встретить на бензопилах, мотокосах и даже на авиатехнике.

Устройство и принцип работы карбюратора

Карбюратор поплавкового типа представляет собой единый узел, включенный в систему питания. За время использования такой системы на автомобилях было разработано большое количество карбюраторов, имеющие разные особенности по конструкции, но все они функционируют используя один принцип.

Что такое карбюратор? Простейший поплавковый карбюратор состоит из двух камер:

  1. поплавковой камеры;
  2. и смесительной.

В задачу первой входит дозирование топлива и поддержание его на определенном уровне. Благодаря этой камере обеспечивается стабильная подача бензина при разных условиях работы мотора.

Конструктивно она очень проста. Внутри устройства имеется поплавковая камера с помещенным в нее поплавком, связанным с клапаном игольчатого типа, который размещен в канале подачи бензина от бензонасоса. По мере расхода топлива поплавок опускается, а с ним и клапан, в результате канал открывается и бензин закачивается в полость. При закачке необходимого уровня поплавок вместе клапаном поднимается вверх и полностью перекрывает канал.

Видео: Устройство карбюратора (Специально для АВТОмладенцев)

Вторая камера обеспечивает смешивание топлива в проходящий воздушный поток. Для этого в ней установлен диффузор – специально суженый участок камеры. Благодаря этому диффузору, воздух, проходящий через него, значительно ускоряется.

Две эти камеры соединены между собой распылителем. Та его сторона которая установлена в поплавковой камере дополнительно оснащена топливным жиклером – специальной вставкой со сквозным отверстием определенного диаметра. Его задача – обеспечивать подачу строго определенного количества бензина. Второй конец распылителя выведен в диффузор.

Работает все так: на такте впуска в цилиндре двигателя поршень движется вниз, создавая разрежения. Из-за этого происходит всасывание воздуха через воздухозаборник с установленным в него фильтром. Этот заборник располагается на карбюраторе, поэтому поток проходит через смесительную камеру.

Движение воздуха при ускорении в диффузоре, обеспечивает образование разрежения в распылительной трубке, из-за чего топливо начинает из него вытекать и подмешиваться в проходящий поток.

Регулировка подаваемой смеси в цилиндры обеспечивается дроссельной заслонкой, которая установлена за диффузором. Путем перекрывания канала, по которому движется топливовоздушная смесь, регулируется скорость движения воздуха. Именно на эту заслонку и воздействует водитель, нажимая на акселератор.

Устройство карбюратора подразумевает еще одну заслонку – воздушную. Если дросселем регулируется подаваемое количество уже готовой смеси, то вторая заслонка перекрывает подачу воздуха. А поскольку в цилиндрах разрежение при работающем моторе все же создается, то смесь получается обогащенной, которая характеризуется повышенным содержанием топлива.

Что еще входит в конструкцию?

Но это упрощенная схема карбюратора. На деле же выясняется, что карбюратор состоит из большого числа деталей и все значительно сложнее, ведь двигатель во время эксплуатации работает в разных режимах, при этом для каждого из них необходима смесь соответствующего состава.

Поэтому современный карбюратор поплавкового типа имеет сложное устройство со значительным количеством каналов, вспомогательных систем и дополнительного оборудования. Все это позволяет карбюратору обеспечивать смесеобразование на любых режимах работы.

Поэтому в конструкции карбюратора, помимо двух камер, имеется:

  • система пуска;
  • главная дозирующая система;
  • система холостого хода;
  • насос ускорительный;
  • экономайзер;
  • эконостат;

Каждая из этих составляющих имеет свое назначение в устройстве карбюратора и обеспечивают подачу оптимальной по количеству и качеству смеси на любых режимах функционирования силового агрегата.

1. Система пуска

Система пуска обеспечивает подачу обогащенной смеси в цилиндры двигателя во время запуска мотора. Основным элементом этой системы является воздушная заслонка. В отечественных карбюраторах она имеет ручное управление (рукоятка подсоса, выведенная в салон). В зарубежных аналогах часто встречается автоматическая система пуска, которая самостоятельно регулирует степень открытия воздушной заслонки.

При этом система пуска конструктивно сделана так, чтобы предотвратить подачу переобогащенной смеси в цилиндры сразу после пуска мотора. Для этого привод заслонки сделан так, чтобы она имела возможность самостоятельно приоткрываться, обеспечивая обеднение смеси. К тому же она связана посредством системы тяг с дроссельной заслонкой, что позволяет карбюратору во время запуска и прогрева регулировать степень открытия этих заслонок.

2. Главная дозирующая система

Главная система дозировки обеспечивает основную подачу смеси в цилиндр при всех режимах работы мотора. Единственное, она не задействуется при работе двигателя в режиме холостого хода. Основная ее задача – подача необходимого количества смеси (несколько обедненной) в цилиндры двигателя. Для того, чтобы исключить переобогащение смеси в переходных режимах эта система осуществляет компенсацию недостающего количества воздуха путем подачи из распылителя не чистого бензина, а эмульсии, в которую уже подмешана часть воздуха. Для этого на большинстве карбюраторов топливо, перед попаданием в распылитель, проходит через специально проделанные эмульсионные колодца, где и осуществляется предварительное смешивание.

3. Система ХХ

Система холостого хода обеспечивает устойчивую работу силовой установки на малых оборотах, когда дроссельная заслонка полностью закрыта. Представляет она собой систему каналов по которым подается воздух и топливо под дроссельную заслонку. То есть, смесительная камера при таком режиме не задействуется, поскольку система ХХ изготавливает необходимое количество смеси и подает во впускной коллектор в обход ее. Дополнительно эта система включает в себя еще один канал – переходной, в задачу которого входит обеспечение поддержания стабильной работы мотора во время смены режима от ХХ до средних оборотов.

Ещё кое-что полезное для Вас:

Видео: Карбюратор ОЗОН. Диагностика и Ремонт

4. Ускорительный насос

Ускорительный насос обеспечивает подачу необходимого количества смеси при резком ускорении, когда главная дозирующая система не успевает обеспечить это, поскольку она обеспечивает нормальную подачу только при плавном открытии дроссельной заслонки. В задачу этого насоса входит кратковременное обогащение смеси, что позволяет избежать «провала» при ускорении. Для этого имеется специальный канал, перекрытый шариковыми клапанами и оснащенный мембраной, привод которой осуществляется от дросселя. При резком нажатии на акселератор, шарики приоткрывают канал, а мембрана выдавливает порцию эмульсии в специальный распылитель, установленный перед диффузором.

Экономайзер и эконостат

Экономайзер обеспечивает максимальный выход мощности от мотора, когда это необходимо. Достигается это подачей обогащенной смеси за счет подачи дополнительной порции эмульсии в основной распылитель в обход главной системы дозировки.

Эконостат позволяет двигателю выдавать максимальную мощность при высоких оборотах. Для этого данный элемент обеспечивает подачу и бензина непосредственно из поплавковой полости и распыление его перед диффузором.

Это основные элементы и системы карбюратора. Также в его конструкции используется поплавковая камера сбалансированного типа. Чтобы бензин в ней поддерживался на заданном уровне, в камере не должно образовываться разрежение и для этого ее соединяют с атмосферой. Сбалансированная же камера подразумевает объединение ее с горловиной карбюратора, что предотвращает попадание в нее загрязняющих веществ вместе с воздухом.

Обслуживание карбюратора

При своей сложной конструкции регулировок у карбюратора не так уж и много, и касаются они только системы холостого хода и уровня топлива в камере с поплавком.

Чтобы установить стабильную работу мотора на ХХ, имеются два специальных винта – количества (воздушный) и качества (топливный). Первый представляет собой упорный элемент, которым регулируется степень открытия дроссельной заслонки для поступления через зазор между ним и стенкой воздуха для создания смеси.

Второй винт – игольчатый, установлен в канал, по которому эмульсия попадает в задроссельный канал. Путем вкручивания и выкручивания изменяется сечение этого канала, и как следствие – количества подаваемой эмульсии.

Недостатком карбюратора является то, что у него имеется большое количество каналов и жиклеров небольшого сечения. Поэтому в процессе эксплуатации загрязняющие элементы, попадающие вместе с воздухом и бензином, оседают в них и закупоривают каналы и жиклеры.

Поэтому важно периодически проводить чистку узла. Сделать это можно вручную, с полной разборкой узла, промывкой и продувкой каналов.

Но последнее время появились специальные чистящие средства. Такие очистители представляют собой особую смесь, которая попадая в каналы обеспечивает отслоение и растворение отложение и смол в каналах, после чего они попадают в цилиндры вместе с топливом и сгорают. Но стоит отметить, что таким средством удается удалить только небольшие засорения. В случае большого количества отложений удалить их можно только вручную.

Устройство и принцип работы карбюратора

Автомобильная индустрия не стоит на месте и постоянно совершенствует и модернизирует свои системы. Одной из таковых считается, проверенная временем, система питания, которая подразделяется на два вида: инжекторная и карбюраторная. Последняя значительно устарела относительно первой, однако не изжила себя полностью.

Читайте также:  Машины-ассенизаторы: фото, характеристики

Карбюраторная система главным образом предназначена для подготовки, а затем соединения бензина или солярки с воздухом, для получения обогащенной смеси. После этого система распределяет полученный состав по камерным отсекам двигателя внутреннего сгорания.

Есть две разновидности систем карбюратора: поплавковая и игольчато-мембранная. Существует еще барботажная, но она больше не применяется. Отметим, что в автомеханике используется исключительно поплавковый тип, а вот игольчатый встречается, например, в бензопилах или мотокосах, но активнее всего этот принцип применяется авиапромышленности.

Термин «карбюратор» прекрасно символизирует основное предназначение данного механизма. Оно произошло от слова «carburation», что в переводе с французского означает «смешивать». Именно он стал первым механизмом, созданным для получения топливновоздушной смеси.

Действительно внутри карбюратора запускается процесс соединения кислорода и содержащихся в нем примесей, как правило, это азот и иные газы, плюс бензин или дизельное топливо.

Пропорции соотношения веществ, для оптимальной работы, составляют примерно пятнадцать к одному. Чтобы запустить двигатель внутреннего сгорания нужно больше горючего топлива, примерный расчет десять к одному.

Данные показатели формальны, и при разных обстоятельствах и переменных формула может меняться. Также много зависит от качества самого топлива. По этой причине механизм современного карбюратора сложен и многофункционален.

Чтобы лучше разобраться в строении карбюратора поплавковой модификации , нужно разобрать его основные детали, после чего станет проще разобраться как они между собой взаимодействуют. За всю историю развития машиностроения было разработано много конструктивных решений, они все незначительно отличались друг от друга, но функционально выполняли одинаковые задачи и принцип работы у всех одинаковый.

Из чего состоит стандартный карбюратор

Из чего состоит стандартный карбюратор: 1 — топливопровод; 2 — игольчатый клапан; 3 — отверстие в крышке поплавковой камеры; 4 — распылитель; 5 — воздушная заслонка; 6 — диффузор; 7 — дроссельная заслонка; 8 — смесительная камера; 9 — топливный жиклер; 10 — поплавок; 11 — поплавковая камера.

Современный механизм состоит из четырех основных элементов:

  1. Сама камера с поплавком;
  2. Жиклер;
  3. Распылитель;
  4. Диффузор;
  5. Дроссельная заслонка.

Поплавковая камера

Полость камеры разделена на два отсека. Первый отсек контролирует наличие и поступление топлива в пределах узла. С её помощью происходит бесперебойное и непрерывное снабжение мотора топливом, независимо от условий. Незамысловатый механизм предусматривает, что внутри камеры находится поплавок, который цепляется за игольчатый клапан, расположенный у начала отверстия канала. Этот процесс обеспечивает подачу бензина из топливного бака.

Поплавковая камера: 1 – поплавок; 2 — ограничитель хода поплавка; 3-регулировка уровня топлива; 4 – уровень топлива в поплавковой камере.

По мере испарения топлива и снижения его уровня, поплавок погружается ниже, а клапан расширяется, за счет чего происходит очередное впрыскивание топлива внутрь полости. Если случается обратный процесс, то поплавок наоборот поднимается, а клапан сужается.

Второй камерный отсек служит для замешивания горючего и воздуха.

Диффузор

Когда бензин и воздушный поток соединяются воедино, то попадают в диффузор. Так как отверстие его очень маленькое, при попадании в него скорость циркуляции смеси увеличивается.

Распылитель

Служит соединительным мостиком между камерными отсеками. Распылитель соприкасается с жиклером и диффузором.

Жиклер

Специальный вставочный механизм, с отверстием посередине. Оно сквозное и имеет определенный диаметр. Именно жиклер отвечает за подачу необходимого количества топлива.

Итак, представим себе процесс. Сначала запускается двигатель, после чего поршень цилиндра начинает давить вниз, создавая разряжение. Из-за этого эффекта происходит усиленное засасывание воздуха при помощи заборника с фильтром, который установлен на карбюраторе.

Дроссельная и воздушная заслонки

Воздушная заслонка помогает следить за уровнем обогащенности горючего. При закрытии прохода случается излишнее обогащение (повышенное содержание смеси), которое влечет остановку работы мотора. Дроссельная заслонка установлена позади диффузора, поэтому перекрывая канал она регулирует скорость движения топливновоздушной массы.

Когда водитель нажимает на акселератор, он таким образом воздействует на дроссель.

Так выглядит упрощенный вариант карбюраторной схемы. Но на самом деле он состоит из множества элементов и сложных механизмов, потому что эксплуатация двигателя происходит в разных условиях климата и рельефа, в зависимости от этого требуется различный состав топлива.

Именно по этой причине у современной поплавковой системы такое многоступенчатое устройство с вспомогательным оборудованием и дополнительными системами. Учитывая эти факторы карбюратор способен приготовить смесь для каждого случая.

Какие еще системные элементы дополняют конструкцию карбюратора?

  1. Пусковой механизм;
  2. Дозирующий механизм;
  3. Система холостого хода;
  4. Ускорительный насос;
  5. Экономайзер;
  6. Эконостат.

Всякий элемент выполняет свою роль для поддержания нормального рабочего состояния агрегата.

Пусковая система карбюратора

Данная система осуществляет впрыск обогащенного горючего в двигательные элементы (цилиндры). Это происходит в момент запуска. Тут ключевую роль играет воздушная заслонка. В консрукциях российского производства, она управляется вручную при помощи рукоятки подсоса, которая выведена внутрь салона. В иностранных моделях используется система автоматизированного запуска, которая независимо контролирует раскрытие воздушной заслонки.

Пусковое устройство карбюратора: 1 — рычаг привода воздушной заслоним; 2 — воздушная заслонка; 3 — тяга; 4 — шток-серьга; 5 -регулировочный винт; 6 — телескопическая тяга; 7 — тяга регулирования положения дроссельной заслонки; 8 — дроссельная заслонка.

Кроме того, система конструкции предусматривает предотвращение поступления переобогащенного питания внутрь цилиндров сразу после запуска. Специально привод сконструирован таким образом, что может выполнять открытие створки чтобы произошло обеднение смеси. Также она связана тягой с дросселем. Это дает возможность при запуске и во время прогрева регулировать уровень раскрытия створок.

Дозирующая система карбюратора

Первостепенная задача этого механизма – обеспечивать нужную дозировку при подаче топливной смеси, независимо от режима работы двигателя в целом. Есть только один режим, при котором дозирующая система отключается. Речь о холостом ходу. При подаче нужной величины топлива, хоть и обедненной в оба цилиндра.

Дозирующая система карбюратора: 1 — воздушный жиклер; 2 — распылитель; 3 — диффузор; 4 — топливный жиклер; 5 — дроссельная заслонка.

Для исключения возможности поступления обогащенной смеси на переходных этапах происходит восполнение недостающей величины воздуха при помощи вливания из распылителя не чистого горючего, а специальной эмульсии, в которой уже содержится необходимое количество кислорода. В большинстве карбюраторных систем, горючее перед тем как попасть в распылитель, проходит через сеть специальных эмульсионных колодцев, которые подмешивают воздух.

Холостой ход

Эта система призвана сделать работу по силовой установке на минимальных оборотах, в момент, когда дроссельная заслонка находится в закрытом состоянии.

Это система канальцев, сквозь которые проходит поток воздуха и вместе с топливом заливается под дроссельную заслонку. В этом случае, смесительная камера не используется, поскольку режим холостого хода производит достаточное количество смеси и наполняет впускной коллектор минуя её. Также эта система имеет дополнительный элемент в виде переходного канала, который должен поддерживать бесперебойную работу во время переключения режимов от холостого хода на средние передачи.

Данная система выполняет функцию по снабжению мотора горючим в тот момент, пока дозирующая система не активна. Именно по этой причине возможна силовая работа установки при пониженных оборотах. При помощи винтов регулировки происходит коррекция пропорциональных составляющих топлива и кислорода на холостых оборотах. В новых моделях автомобилей, чьи производители озабочены экологическим состоянием региона, и следят за уровнем загрязненности выхлопных газов снабжают систему опломбированным винтом регулировки. Не является правдивым утверждение, что подобное изменение смесительного состава вызывает изменение выхлопов при всех возможных вариациях.

Ускорительный насос

Ускорительный насос реализует возможность впрыска нужного количества и состава смеси во время резкого ускорения, когда основная система дозирования не справляется, так как должна обеспечивать функциональную подачу только при медленном раскрытии дроссельной заслонки. Целью насоса является быстрое и своевременное обогащение состава, а это способствует предотвращению «провала» во время ускорения.

Специально для этого сделан канал, со множеством шариковых клапанов, которые снабжены цельной мембраной. Соединительная подводка к клапану идет напрямую от дросселя. Когда происходит спонтанное воздействие на акселератор, шарики расширяются и позволяют клапанному отверстию раскрыться, а мембрана осуществляет выдавливание нужного количества эмульсионной смеси в распылитель, который расположен впереди диффузора.

Экономайзер и эконостат

Экономайзер регулирует производительность мотора, когда это становится жизненнонеобходимым для поддержания работы. Это достигается при помощи подачи обогащенной смеси и дополнительной подаче порции эмульсии напрямую в основание распылителя, но в обход главной дозирующей системы.

Эконостат даёт ДВС возможность по итогу достигать максимальной мощности при работе на повышенных оборотах. Именно для этих целей предназначен данный элемент, обеспечивающий впрыскивание горючего напрямую из поплавковой шахты и мгновенное его распределение перед диффузором.

Это основные и главные детали в системе поплавковых карбюраторов. Кроме вышеперечисленного надо отметить, что в конструкции используется также камера сбалансированного типа. Это нужно для поддержания бензина на нужной отметке, а в камере отсутствует разряжение, для чего она соединена с атмосферой. В случае со сбалансированной камерой происходит стыковка с горловиной карбюратора, за счет чего невозможно попадание инородных веществ при заборе воздуха.

Несмотря на хитрую схему конструкции регулировок карбюратора немного, и все они относятся только к системе холостого хода. Чтобы оптимизировать и стабилизировать её работу в этом режиме, предусмотрены специальные винты: воздушный для количества и топливный для качества (игольчаты). Сквозь имеющееся отверстие поступает горючее.

Игольчатый винт находится внутри канала и передает эмульсию в задроссельный отсек. Чтобы скорректировать количество эмульсии, меняют сечение самого канала при помощи вкручивания или выкручивания, в зависимости от конкретной ситуации.

Слабая сторона карбюратора в том, что его конструкция предусматривает множество жиклеров и каналов, у которых небольшие насечки. По этой причине при использовании механизма по назначению в него попадают различные загрязнения. Они засасываются внутрь вместе с топливом, но не сгорают вместе с ней, а образуют осадок на стенках каналов и жиклеров, тем самым закупоривая их.

Поэтому нужно систематически производить чистку узла. Данная процедура может проводится профессионалами, но можно сделать её самостоятельно, но для этого понадобиться полная разборка узла. После чего необходимо качественное его промыть, просушить либо продуть каналы.

В последние годы индустрия бытовой химии шагнула вперед и появилось множество чистящих составов. Это химические составы, способные при взаимодействии с материей вызывают расщепление различных отложений и смол в каналах. В результате химической реакции вещество попадает в цилиндр, где смешивается с топливом и сгорает. Надо предупредить, что подобный способ очистки подходит исключительно в случае несерьезных засоров. В противном ситуации удалять их придется собственноручно.

Читайте также:  Трактор т 75

Карбюратор: конструкция и принцип работы

До середины 80-х бензиновые двигатели внутреннего сгорания на легковых и легких грузовых автомобилях массово оснащались карбюраторами. Такие двигатели работают по принципу сгорания заранее приготовленной внешним устройством топливно-воздушной смеси в цилиндрах мотора. Указанная рабочая смесь состоит из капель горючего и воздуха. Карбюратор отвечает за процесс, подразумевающий образование смеси из этих компонентов в нужной пропорции для максимальной эффективности работы ДВС. Простейший карбюратор представляет собой механическое дозирующее устройство.

Читайте в этой статье

Немного истории

Ранние разработки на заре эпохи двигателестроения использовали в качестве горючего светильный газ. Карбюратор таким двигателям на раннем этапе был попросту не нужен. Светильный газ поступал в цилиндры благодаря разрежению, которое образовывалось в процессе работы двигателя. Главной проблемой такого горючего являлась его высокая стоимость и ряд сложностей в процессе использования.

Вторая половина XIX века стала тем периодом, когда изобретатели, инженеры и механики во всем мире старались заменить дорогой светильный газ более экономичным, дешевым и доступным видом горючего для двигателя внутреннего сгорания. Лучшим решением стало использование привычного для нас сегодня жидкого топлива.

Стоит учесть, что такое топливо не может воспламениться без участия воздуха. Для приготовления смеси из воздуха и топлива потребовалось дополнительное устройство. Мало того, но смешивать воздух с горючим необходимо было еще и в нужных пропорциях.

Для решения этой задачи изобрели первый карбюратор. Устройство увидело свет в 1876 году. Создателем ранней модели карбюратора стал итальянский изобретатель Луиджи Де Христофорис. По своей конструкции и принципу работы первый карбюратор имел ряд существенных отличий от более современных аналогов. Для получения качественной топливно-воздушной смеси горючее в первом устройстве нагревалось, а его пары смешивались с воздухом. По ряду причин этот способ образования рабочей смеси не получил широкого распространения.

Разработки в данной области продолжились, а уже через год талантливые инженеры Готлиб Даймлер и Вильгельм Майбах создали конструкцию двигателя внутреннего сгорания, который имел карбюратор, работающий по принципу распыления топлива. Это устройство легло в основу для всех последующих разработок.

Модернизация

Главным направлением дальнейшей работы инженеров стала максимальная автоматизация всех процессов смесеобразования. Над совершенствованием конструкции карбюратора трудились лучшие умы многих компаний по производству автомобилей и сопутствующего оборудования. По этой причине можно встретить великое множество простых и сложных моделей карбюраторов от многочисленных мировых производителей.

Дальнейшее развитие

Карбюраторы стали активно вытесняться инжекторными системами только в конце XX века. До этого времени конструкцию карбюратора усиленно совершенствовали. Последними витками эволюции карбюраторного впрыска стали карбюраторы под контролем электроники. В таких карбюраторах имелось несколько электромагнитных клапанов, работу которых контролировало специальное устройство управления. Для примера можно упомянуть марку карбюратора Hitachi. В конструкции насчитывалось без малого 5 клапанов, а заслонки управлялись электронным способом.

Последнее поколение конструктивно сложных карбюраторов отлично демонстрирует уже упомянутая модель карбюратора Hitachi. Этот карбюратор устанавливался на автомобили марки Nissan в самом конце 80-х и в начале 90-х годов. Сложность этого поколения карбюраторов заключается в большом количестве вспомогательных устройств, особенно если сравнивать продукт Hitachi с примитивным «Солекс», который ставился на ВАЗ.

Вспомогательные устройства отвечали за стабилизацию работы карбюратора в различных режимах. К таким режимам и особенностям эксплуатации можно отнести резкий сброс газа, режим холостого хода в процессе простоя на автомобиле с автоматической КПП, выравнивание и стабилизацию оборотов силового агрегата после включении климатической установки, а также многие другие.

Доведенный до совершенства карбюратор последних поколений базово состоял из многочисленных устройств. Мы назовем только некоторые из них для ознакомления:

  1. Система регулирования температуры наружного воздуха;.
  2. Обогреватель впускного коллектора;
  3. Клапан прекращения подачи топлива;
  4. Клапан устройства обогащения смеси;
  5. Биметаллическая пружина воздушной заслонки в устройстве механизма открытия дросселя;
  6. Система быстрого холостого хода и т.д;

Такие устройства относятся к последним «электронным» карбюраторам. Дополнительные элементы в этих моделях были выполнены в виде отдельных аналоговых устройств. Устройства управлялись простейшей электроникой или работали по принципу саморегулирования (биметаллическая пружина).

Карбюратор и инжектор

Далее в истории систем топливоподачи и смесеобразования сначала появился моновпрыск (моноинжектор), а полностью электронный впрыск и производительные топливные форсунки окончательно вытеснили морально устаревшие карбюраторы.

Главным преимуществом инжектора является намного более точное и своевременное дозирование топлива для получения нужных пропорций топливно-воздушной смеси. Появление и внедрение в автоиндустрию доступных по цене микропроцессоров в итоге привело к тому, что необходимость в сложном карбюраторе и дополнительных устройствах в его конструкции попросту исчезла. Все функции отдельных элементов карбюратора взял на себя один единственный блок управления (ЭБУ), а в конструкции инжектора установили простые устройства исполнения.

Сегодня карбюраторный впрыск встречается только на тех двигателях, основным назначением которых является целевая установка на спецтехнику. Причиной такого решения стала уязвимость электронных инжекторных систем во время тяжелых условий эксплуатации. Электронные узлы и модули инжектора страдают от повышенной влажности и загрязненности, а форсунки чувствительны к качеству топлива. Для примера стоит сказать, что однозначно лучше установить на транспортное спецсредство при использовании такового на болотах именно механический карбюратор, который не перегорит. Такой карбюратор всегда можно с легкостью обслужить, почистить и просушить при необходимости.

Виды карбюраторов

Как мы уже говорили, процесс модернизации карбюраторов породил большое количество видов данного устройства от разных производителей. Все это многообразие карбюраторов условно можно разделить на три группы:

  • барботажный;
  • мембранно-игольчатый;
  • поплавковый;

Два первых типа карбюраторов уже давно практически не встречаются, так что останавливаться на этих конструкциях мы не будем. Целесообразнее рассмотреть поплавковый карбюратор, который еще можно увидеть в различных модификациях на гражданских автомобилях эпохи 90-х в наши дни.

Устройство поплавкового карбюратора

Главной задачей карбюратора является смешение топлива и воздуха. Разные модели карбюраторов осуществляют этот процесс по схожему принципу. Поплавковый карбюратор состоит из следующих элементов:

  • поплавковая камера;
  • поплавок;
  • запорная игла поплавка,
  • жиклер;
  • смесительная камера;
  • распылитель;
  • трубка Вентури;
  • дроссельная заслонка;

Поплавковый карбюратор устроен так, что к его поплавковой камере подведена специальная магистраль. По этой магистрали из топливного бака в карбюратор подается топливо. Регулирование количества топлива в камере осуществляется посредством двух элементов, которые взаимосвязаны. Речь идет о поплавке и игле. Падение уровня топлива в поплавковой камере означает, что и поплавок опустится вместе с иглой. Таким образом получится, что опустившаяся игла откроет доступ для проникновения в камеру следующей порции горючего. При заполнении камеры бензином поплавок поднимется, а игла при этом параллельно перекроет горючему доступ.

В нижней части поплавковой камеры находится следующий элемент под названием жиклер. Жиклер выполняет функцию калибратора и обеспечивает дозирование подачи горючего. Через жиклер топливо попадает в распылитель. Так происходит перемещение нужного количества горючего из поплавковой камеры в смесительную камеру. В смесительной камере происходит процесс приготовления рабочей топливно-воздушной смеси.

Конструктивно смесительная камера имеет диффузор. Указанный элемент создан для того, чтобы увеличивать скорость воздушного потока. Диффузор отвечает за создание разрежения воздуха в непосредственной близости от распылителя. Это помогает вытягивать топливо из поплавковой камеры, а также способствует лучшему его распылению в смесительной камере. Таково базовое устройство простого поплавкового карбюратора.

Дроссельная заслонка : холодный пуск и холостой ход

То количество рабочей топливно-воздушной смеси, которое поступит в цилиндры двигателя, будет зависеть от положения дроссельной заслонки. Заслонка имеет прямую связь с педалью газа. Но это еще не все.

Некоторые автомобили с карбюратором имели дополнительное устройство для управления дроссельной заслонкой. Этот элемент хорошо знаком любителям старой «классики» от ВАЗ. В народе это устройство автомобилисты прозвали «подсос», а само устройство создано для холодного запуска. Элемент выполнен в виде специального рычага, который находится в нижней части торпедо со стороны водителя.

Рычаг позволяет дополнительно управлять дроссельной заслонкой. Если вытянуть «подсос» на себя, в таком случае заслонка прикрывается. Это позволяет ограничить доступ воздуха и увеличить уровень разрежения в смесительной камере карбюратора.

Бензин из поплавковой камеры при повышенном разрежении вытягивается в смесительную камеру намного интенсивнее, а недостаточное количество поступившего воздуха заставляет карбюратор готовить для двигателя обогащенную рабочую смесь. Именно такая смесь лучше всего подходит для уверенного запуска холодного мотора.

Работа карбюраторного двигателя в режиме холостого хода осуществляется следующим образом:

  • карбюратор оборудован специальными дополнительными воздушными жиклерами. Эти жиклеры отвечают за подачу строго дозированного количества воздуха;
  • воздух проходит под дроссельной заслонкой и далее по рабочему алгоритму смешивается с бензином. При этом весь процесс происходит тогда, когда педаль газа не выжата и отпущена;

Вот так и выглядит базовое устройство и принцип работы карбюратора поплавкового типа.

Сильные и слабые стороны устройства

Главным достоинством карбюратора является его доступная по цене ремонтопригодность. В свободной продаже по сей день существуют специальные ремонтные комплекты, которые позволяют вернуть карбюратор в строй достаточно быстро. Для ремонта карбюратора не требуется арсенал какого-либо специального оборудования, а отремонтировать устройство при наличии определенных умений и навыков под силу практически любому автомобилисту.

Механический карбюратор не так сильно боится загрязнений и воды, так как их попадание не может окончательно вывести его из строя. В этом одновременно кроется как сильная, так и слабая сторона устройства. Карбюратор нужно достаточно часто подстраивать и обязательно чистить по сравнению с инжекторным впрыском, но он выносливее электронных решений при возникновении ряда таких условий, которые относятся к тяжелым или даже экстремальным условиям эксплуатации.

К дополнительным плюсам карбюратора относят его меньшую чувствительность к топливу низкого качества, а процесс чистки не представляется сложным. Хотя карбюратор и является относительно сложным устройством, но диагностировать неисправности и обслуживать его определенно проще сравнительно с забитой или неисправной инжекторной системой.

Последним аргументом против карбюратора является повышенная токсичность выхлопа, что и привело к отказу от его использования на современных авто по всему миру. Сегодня карбюратор оправданно считается безнадежно устаревшим «классическим» решением.

Читайте также:  Принцип работы сабельной пилы

Особенности регулировки карбюратора Солекс. Как выставить уровень топлива в поплавковой камере, настроить холостой ход, подобрать жиклеры, убрать провалы.

Чистка карбюратора: когда необходимо чистить дозирующее устройство, признаки и симптомы. Доступные способы очистки карбюратора без разбора и снятия с авто.

Доработка и модернизация карбюратора. Основные недостатки системы карбюраторного впрыска и способы их устранения, настройка. Тюнинг впускного коллектора.

Главная дозирующая система, переходная система во вторичной камере, разновидности систем холостого хода. Ускорительный насос, экономайзер и холодный пуск.

Основные причины, кторые приводят к обеднению рабочей смеси. Бедная смесь на карбюраторных и инжекторных ДВС, а также на моторах с ГБО. Диагностика, ремонт.

Различные виды доступных средств и составов для прочистки карбюратора, преимущества и недостатки. Как правильно чистить карбюратор, какой очиститель лучше.

Система питания карбюраторного двигателя

Внешний вид карбюратора:
1 — блок подогрева зоны дроссельной заслонки;
2 — штуцер вентиляции картера двигателя;
3 — крышка ускорительного насоса;
4 — электромагнитный запорный клапан;
5 — крышка карбюратора;
6 — шпилька крепления воздушного фильтра;
7 — рычаг управления воздушной заслонкой;
8 — крышка пускового устройства;
9 — сектор рычага привода дроссельных заслонок;
10 — колодка провода датчика-винта ЭПХХ;
11 — регулировочный винт количества смеси холостого хода;
12 — крышка экономайзера;
13 — корпус карбюратора;
14 — штуцер подачи топлива;
15 — штуцер отвода топлива;
16 — регулировочный винт качества смеси холостого хода (по стрелке);
17 — штуцер для подачи разрежения к вакуумному регулятору зажигания

Для работы двигателя необходимо приготовить горючую смесь воздуха и паров топлива, которая должна быть гомогенной, т. е. хорошо перемешанной и иметь определенный состав, чтобы обеспечить наиболее эффективное сгорание. Система питания бензинового ДВС с искровым зажиганием служит для приготовления горючей смеси и подачи ее в цилиндры двигателя и удаления из цилиндров отработавших газов.
Процесс приготовления горючей смеси называют карбюрацией. Долгое время в качестве основного устройства для приготовления смеси бензина и воздуха и подачи ее в цилиндры двигателя использовался агрегат, называемый карбюратором.

Принцип работы простейшего карбюратора:
1 — топливопровод;
2 — игольчатый клапан;
3 — отверстие в крышке поплавковой камеры;
4 — распылитель;
5 — воздушная заслонка;
6 — диффузор;
7 — дроссельная заслонка;
8 — смесительная камера;
9 — топливный жиклер;
10 — поплавок;
11 — поплавковая камера
В простейшем карбюраторе топливо находится в поплавковой камере, где поддерживается постоянный уровень топлива. Поплавковая камера связана каналом со смесительной камерой карбюратора. В смесительной камере имеется диффузор — местное сужение камеры. Диффузор дает возможность увеличить скорость проходящего через смесительную камеру воздуха. В самую узкую часть диффузора выведен распылитель, соединенный каналом с поплавковой камерой. В нижней части смесительной камеры имеется дроссельная заслонка, которая поворачивается при нажатии водителем педали «газа».
Когда двигатель работает, через смеситель карбюратора проходит воздух. В диффузоре скорость воздуха увеличивается, а перед распылителем образуется разрежение, которое приводит к стеканию топлива в смесительную камеру, где оно смешивается с воздухом. Таким образом, карбюратор, работающий по принципу пульверизатора, создает топливно-воздушную горючую смесь. Нажимая педаль «газа», водитель поворачивает дроссельную заслонку карбюратора, изменяет количество смеси, поступающей в цилиндры двигателя, а следовательно, его мощность и обороты.
Из-за того что бензин и воздух имеют различную плотность, при повороте дроссельной заслонки изменяется не только количество подаваемой в камеры сгорания горючей смеси, но и соотношение между количеством топлива и воздуха в ней. Для полного сгорания топлива смесь должна быть стехиометрической.
При пуске холодного двигателя необходимо обогащать смесь, поскольку конденсация топлива на холодных поверхностях камеры сгорания ухудшает пусковые свойства двигателя. Некоторое обогащение горючей смеси требуется при работе на холостом ходу, при необходимости получения максимальной мощности, резких ускорениях автомобиля.
По принципу своей работы простейший карбюратор по мере открытия дроссельной заслонки постоянно обогащает топливно-воздушную смесь, поэтому его невозможно использовать для реальных двигателей автомобилей. Для автомобильных двигателей используются карбюраторы, имеющие несколько специальных систем и устройств: систему пуска (воздушная заслонка), систему холостого хода, экономайзер или эконостат, ускорительный насос и др.
По мере повышения требований к экономии топлива и снижению токсичности отработавших газов карбюраторы существенно усложнялись, в последних вариантах карбюраторов появились даже электронные устройства.

Дозирующие устройства карбюратора и принцип их действия

Дозирующие устройства карбюратора и принцип их действия. Главная дозирующая система (ГДС) представляет собой смесеобразующее устройство простейшего карбюратора с дополнительными корректирующими приспособлениями.

Оно обеспечивает исправление характеристики простейшего карбюратора до требуемой при работе двигателя на средних нагрузках. Для этого в состав главного дозирующего устройства включается система компенсации смеси. Эта система обеспечивает постепенное обеднение смеси при переходе от малых нагрузок к средним (компенсация смеси).

Совместно с экономайзером или эконостатом главное дозирующее устройство работает при полной мощности двигателя с максимальным открытием дроссельной заслонки. При малых нагрузках главное дозирующее устройство через главный жиклер подает топливо в дозирующую систему холостого хода. Таким образом, главное дозирующее устройство карбюратора обеспечивает работу двигателя практически во всех чаще всего встречающихся режимах. Через главное дозирующее устройство расходуется наибольшее количество топлива.

В современных карбюраторах регулировка состава горючей смеси, приготовляемой главным дозирующим устройством, осуществляется преимущественно пневматическим торможением топлива. Этот способ широко применяется из-за высокого качества распыливания топлива в воздушном потоке и простоты исполнения системы компенсации смеси. Для улучшения процесса смесеобразования главное дозирующее устройство может иметь два или даже три диффузора.

Работает главное дозирующее устройство с пневматическим торможением топлива (рис. 5) следующим образом. Топливо из поплавковой камеры 1 поступает через главный жиклер 5 в распылитель 4. Распылитель соединен эмульсионным каналом 3 с воздушным жиклером 2 компенсационной системы. Когда двигатель не работает, топливо в поплавковой камере, распылителе и эмульсионном канале находится на одинаковом уровне.

При работе двигателя в диффузоре создается разрежение и топливо начинает вытекать из распылителя. При этом уровень его в эмульсионном канале понижается. По мере открытия дроссельной заслонки разрежение в диффузоре еще больше возрастает. Это вызывает полный расход топлива из эмульсионного канала и через воздушный жиклер 2 в трубку начинает поступать воздух. Вследствие этого уменьшается разрежение у главного жиклера, тормозится истечение топлива через распылитель и образуется эмульсия. В результате количество топлива в смеси уменьшается и смесь обедняется.

Конструктивное исполнение системы компенсации смеси в главном дозирующем устройстве может несколько отличаться по сравнению с описанной. Так, в некоторых карбюраторах эмульсионный канал 3 делают наклонным, а не вертикальным. Это несколько повышает эффективность пневматического торможения. Кроме того, эмульсионный канал 3 выполняют в виде трубки, расположенной в эмульсионном колодце, что повышает эмульсирование топлива.

Карбюраторы, выполненные по рассмотренной схеме главного дозирующего устройства, регулируют изменением проходных сечений главного и воздушного жиклеров. Увеличение проходного сечения воздушного жиклера способствует нарастанию коэффициента избытка воздуха, т. е. обеднению смеси, увеличение проходного сечения главного жиклера вызывает обогащение смеси. Самый выгодный состав смеси для характерных режимов работы двигателя достигается совместными действиями главного дозирующего устройства и системы холостого хода карбюратора.

Рис. 5. Схема главного дозирующего устройства с пневматическим торможением топлива:

1 поплавковая камера; 2 — воздушный жиклер; 3— эмульсионный канал; 4- распылитель; 5 — главный жиклер.

Современные карбюраторы имеют в основном схожие дозирующие системы (рис. 6). Они содержат большой 7 и малый 2 диффузоры, размещенные в главном воздушном канале 3, главный топливный жиклер 8, сообщенный с поплавковой камерой 7 и эмульсионной трубкой 6 с отверстиями, размещенной в эмульсионном колодце 9, воздушный жиклер 5 и распылитель 4, выходящий в главный воздушный канал 3.

Рис. 6. Главная дозирующая система

Постоянный состав горючей смеси обеспечивается путем пневматического торможения топлива с помощью воздушного жиклера 5, расположенного в верхней части эмульсионной трубки 6. При открывании дроссельной заслонки воздух поступает не только через диффузоры 7 и 2, но и через воздушный жиклер 5 в эмульсионную трубку б и тем самым снижает разрежение у топливного жиклера 8. Чем выше разрежение в диффузоре карбюратора, тем больше проходит воздуха через жиклер 5 и тем больше тормозится истечение топлива из поплавковой камеры.

Система не имеет подвижных элементов, поэтому она обладает достаточной стабильностью в работе карбюратора.

Главная дозирующая система двухкамерных карбюраторов (рис. 7) содержит главные топливные жиклеры 7 и 13, заглушки 12, размещенные в нижней части поплавковой камеры 2 и сообщенные с эмульсионными колодцами, в которых концентрично с зазором установлены эмульсионные трубки 3 и 7. Трубки представляют собой полые закрытые снизу цилиндры, имеющие радиальные отверстия на различной высоте.

Главные воздушные жиклеры 4 и 6 устанавливают преимущественно над эмульсионными трубками. Распылители выполнены в малых диффузорах 5 и снабжены каналами подвода горючей смеси. Дроссельные заслонки 14 и 15 соответственно первичной и вторичной камер кинематически связаны между собой таким образом, что вторая камера вступает в работу после открывания первой заслонки на 2/3 ее хода.

При небольшом открывании дроссельных заслонок разрежение в диффузорах невелико, поэтому оно не обеспечивает повышения уровня топлива в колодцах, а следовательно, и его подачу к распылителю. Топливо через фильтр 9 и топливный клапан 10, кинематически связанный с поплавком 11, поступает в поплавковую камеру, сообщенную через балансировочную трубку (канал) 8 с входным патрубком карбюратора.

В дальнейшем топливо из поплавковой камеры через жиклеры 1 и 13 поступает в эмульсионные колодцы, где смешивается с воздухом, и через распылители поступает в малые диффузоры карбюратора. Главная дозирующая система имеет широкие возможности для обогащения горючей смеси. Однако в ряде случаев на режимах больших нагрузок она не обеспечивает необходимый состав горючей смеси. С этой целью применяют дополнительные устройства.

Рис. 7. Главная дозирующая система двухкамерных карбюраторов

При работе ГДС воздух через главный воздушный жиклер 7 поступает в эмульсионные трубки, размещенные в эмульсионном колодце.

Рис. 8. Эмульсионная трубка.

Эмульсионная трубка (рис. 8) содержит корпус 4 с выходными отверстиями 2 и центральным каналом 5, посадочный 1 и уплотнительный 3 буртики. Короткая эмульсионная трубка, размещенная в колодце вторичной камеры, содержит четыре ряда отверстий, а длинная (в первичной) — пять.

MotoKomo.ru